搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Yangian代数在混合介子态的纠缠和衰变中的应用

秦立国 田立君 吴士超

Yangian代数在混合介子态的纠缠和衰变中的应用

秦立国, 田立君, 吴士超
PDF
导出引用
导出核心图
  • Yangian代数是超出李代数更大的无穷维代数, 是研究非线性量子完全可积系统的新对称特性有力数学工具. 基于介子态中夸克-味su(3)对称性和Yangian代数生成元的跃迁特性, 本文研究了Yangian代数Y(su(3))生成元在三种正反介子态(, K, K0 和K0)各自组成的三种混合介子态(, K和Ki0) 衰变中的作用. 将Y(su(3)) 代数的八个生成元(Ī, Ŭ, V, Ī3和Ī8)作为跃迁算子, 作用在混合介子态上, 研究其可能的衰变道, 以及衰变前后纠缠度的变化. 结果表明: (i)在李代数范围内的生成元Ī3和Ī8作用下, 三种混合介子态衰变后组成成份没有发生变化, 其中混合介子态 在Ī8作用下衰变前后纠缠无变化, 其他衰变纠缠度发生了变化. (ii)在其他的六个(Ī, Ŭ和V)超出李代数的生成元的作用下, 三种混合介子态衰变前后组成成份发生了变化, 其中两个衰变后变成 单态, 纠缠度为零; 两个衰变不存在; 剩余两个衰变后纠缠度发生了变化. 此外在带电(K)和中性(Ki0)两类K型混合介子态的六种可能的衰变中, 两种类型的末态的纠缠度两两相同. (iii)三种混合介子态之间可以通过Ī, Ŭ和V算子循环转化, 具有明显的对称性. 本文从具有的对称性上提供了一种探索混合介子态可能衰变的方法, 并且可以用此方法去预测可能的未知衰变粒子和解释已测得的衰变问题.
      通信作者: 秦立国, lgqin@foxmail.com
    • 基金项目: 上海远程教育集团学科研究课题量子代数在量子关联和量子保真度中的应用(批准号: JF1406)和国家自然科学基金(批准号: 11347147, 11075101)资助的课题.
    [1]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [2]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [3]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [4]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [5]

    Curty M, Lewenstein M, Lkenhaus N 2004 Phys. Rev. Lett. 92 217903

    [6]

    Beige A, Braun D, Tregenna B, Knight P L 2001 Phys. Rev. Lett. 85 1762

    [7]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 83 4888

    [8]

    Childs A M, Chuang I L 2000 Phys. Rev. A 63 012306

    [9]

    Langford N K, Dalton R B, Harvey M D, Brien J L, Pryde G J, Gilchrist A, Bartlett S D, White A G 2004 Phys. Rev. Lett. 93 053601

    [10]

    Pasquinucci H B, Peres A 2000 Phys. Rev. Lett. 85 3313

    [11]

    Brukner Č, Zukowski M, Zeilinger A 2002 Phys. Rev. Lett. 89 197901

    [12]

    Ralph T C, Resch K, Gilchrist A 2007 Phys. Rev. A 75 022313

    [13]

    Collins D, Gisin N, Linden N, Massar S, Popescu S 2002 Phys. Rev. Lett. 88 040404

    [14]

    Gell-Mann M, Pais A 1955 Phys. Rev. 97 1387

    [15]

    Feldmann T, Kroll P 1998 Phys. Rev. D 58 114006

    [16]

    Magiera A, Machner H 2000 Nucl. Phys. A 674 515

    [17]

    Kroll P 2005 Modern Phys. Lett. A 20 2667

    [18]

    Shi Y 2006 Phys. Lett. B 641 75

    [19]

    Shi Y, Wu Y L 2008 Eur. Phys. J. C 55 477

    [20]

    Tian L J, Jin Y L, Jiang Y, Qin L G, 2011 Eur. Phys. J. C 71 1528

    [21]

    Uglov D 1998 Commun. Math. Phys. 191 663

    [22]

    Kundu A 1998 Phys. Lett. A 249 126

    [23]

    Bernard D 1993 Inter. J. Modern Phys. B 7 3517

    [24]

    Tian L J, Qin L G, Jiang Y, Zhang H B, Xue K 2010 Commun. Theor. Phys. 53 1039

    [25]

    Tian L J, Qin L G 2010 Eur. Phys. J. D 57 123

    [26]

    Polychronakos A 1992 Phys. Rev. Lett. 69 703

    [27]

    Haldane F D M, Ha Z N C, Talstra J C, Bernard D, Pasquier V 1992 Phys. Rev. Lett. 69 2021

    [28]

    Haldane F D M 1994 arXiv:cond-mat/9401001v3

    [29]

    Wadati M 1988 Phys. Rev. Lett. 60 635

    [30]

    Ge M L, Wang Y 1995 Phys. Rev. E 2919

    [31]

    Qin L G, Tian L J, Yang G H 2012 Eur. Phys. J. C 72 1934

    [32]

    Qin L G, Tian L J, Jiang Y, Zhang H B 2012 Chin. Phys. B 21 057101

    [33]

    Tian L J, Jin Y L, Jiang Y 2010 Phys. Lett. B 686 207

    [34]

    Gell-Mann M 1962 Phys. Rev. 125 1067

    [35]

    Neman Y 1961 Nucl. Phys. 26 222

    [36]

    Chari V, Pressley A 1990 Yangian and R-Matrix. L'Enseignement Matematique 36 p267

    [37]

    Chari V, Pressley A 1994 A Guide to Quantum Groups (Cambridge: Cambrige University Press)

    [38]

    Bai C M, Ge M L, Xue K 1998 Physical meaning of Yangian representation of Chari and Pressley, TH 1998-07, Tianjin, China

    [39]

    Pan F, Lu G Y, Draayer J P 2006 Inter. J. Modern Phys. B 20 1333

  • [1]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [2]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [3]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [4]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881

    [5]

    Curty M, Lewenstein M, Lkenhaus N 2004 Phys. Rev. Lett. 92 217903

    [6]

    Beige A, Braun D, Tregenna B, Knight P L 2001 Phys. Rev. Lett. 85 1762

    [7]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 83 4888

    [8]

    Childs A M, Chuang I L 2000 Phys. Rev. A 63 012306

    [9]

    Langford N K, Dalton R B, Harvey M D, Brien J L, Pryde G J, Gilchrist A, Bartlett S D, White A G 2004 Phys. Rev. Lett. 93 053601

    [10]

    Pasquinucci H B, Peres A 2000 Phys. Rev. Lett. 85 3313

    [11]

    Brukner Č, Zukowski M, Zeilinger A 2002 Phys. Rev. Lett. 89 197901

    [12]

    Ralph T C, Resch K, Gilchrist A 2007 Phys. Rev. A 75 022313

    [13]

    Collins D, Gisin N, Linden N, Massar S, Popescu S 2002 Phys. Rev. Lett. 88 040404

    [14]

    Gell-Mann M, Pais A 1955 Phys. Rev. 97 1387

    [15]

    Feldmann T, Kroll P 1998 Phys. Rev. D 58 114006

    [16]

    Magiera A, Machner H 2000 Nucl. Phys. A 674 515

    [17]

    Kroll P 2005 Modern Phys. Lett. A 20 2667

    [18]

    Shi Y 2006 Phys. Lett. B 641 75

    [19]

    Shi Y, Wu Y L 2008 Eur. Phys. J. C 55 477

    [20]

    Tian L J, Jin Y L, Jiang Y, Qin L G, 2011 Eur. Phys. J. C 71 1528

    [21]

    Uglov D 1998 Commun. Math. Phys. 191 663

    [22]

    Kundu A 1998 Phys. Lett. A 249 126

    [23]

    Bernard D 1993 Inter. J. Modern Phys. B 7 3517

    [24]

    Tian L J, Qin L G, Jiang Y, Zhang H B, Xue K 2010 Commun. Theor. Phys. 53 1039

    [25]

    Tian L J, Qin L G 2010 Eur. Phys. J. D 57 123

    [26]

    Polychronakos A 1992 Phys. Rev. Lett. 69 703

    [27]

    Haldane F D M, Ha Z N C, Talstra J C, Bernard D, Pasquier V 1992 Phys. Rev. Lett. 69 2021

    [28]

    Haldane F D M 1994 arXiv:cond-mat/9401001v3

    [29]

    Wadati M 1988 Phys. Rev. Lett. 60 635

    [30]

    Ge M L, Wang Y 1995 Phys. Rev. E 2919

    [31]

    Qin L G, Tian L J, Yang G H 2012 Eur. Phys. J. C 72 1934

    [32]

    Qin L G, Tian L J, Jiang Y, Zhang H B 2012 Chin. Phys. B 21 057101

    [33]

    Tian L J, Jin Y L, Jiang Y 2010 Phys. Lett. B 686 207

    [34]

    Gell-Mann M 1962 Phys. Rev. 125 1067

    [35]

    Neman Y 1961 Nucl. Phys. 26 222

    [36]

    Chari V, Pressley A 1990 Yangian and R-Matrix. L'Enseignement Matematique 36 p267

    [37]

    Chari V, Pressley A 1994 A Guide to Quantum Groups (Cambridge: Cambrige University Press)

    [38]

    Bai C M, Ge M L, Xue K 1998 Physical meaning of Yangian representation of Chari and Pressley, TH 1998-07, Tianjin, China

    [39]

    Pan F, Lu G Y, Draayer J P 2006 Inter. J. Modern Phys. B 20 1333

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1701
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-02
  • 修回日期:  2015-10-18
  • 刊出日期:  2016-01-20

Yangian代数在混合介子态的纠缠和衰变中的应用

  • 1. 上海开放大学嘉定分校, 上海 201800;
  • 2. 中国科学院上海高等研究院, 上海 201210;
  • 3. 上海大学物理系, 上海 200444
  • 通信作者: 秦立国, lgqin@foxmail.com
    基金项目: 

    上海远程教育集团学科研究课题量子代数在量子关联和量子保真度中的应用(批准号: JF1406)和国家自然科学基金(批准号: 11347147, 11075101)资助的课题.

摘要: Yangian代数是超出李代数更大的无穷维代数, 是研究非线性量子完全可积系统的新对称特性有力数学工具. 基于介子态中夸克-味su(3)对称性和Yangian代数生成元的跃迁特性, 本文研究了Yangian代数Y(su(3))生成元在三种正反介子态(, K, K0 和K0)各自组成的三种混合介子态(, K和Ki0) 衰变中的作用. 将Y(su(3)) 代数的八个生成元(Ī, Ŭ, V, Ī3和Ī8)作为跃迁算子, 作用在混合介子态上, 研究其可能的衰变道, 以及衰变前后纠缠度的变化. 结果表明: (i)在李代数范围内的生成元Ī3和Ī8作用下, 三种混合介子态衰变后组成成份没有发生变化, 其中混合介子态 在Ī8作用下衰变前后纠缠无变化, 其他衰变纠缠度发生了变化. (ii)在其他的六个(Ī, Ŭ和V)超出李代数的生成元的作用下, 三种混合介子态衰变前后组成成份发生了变化, 其中两个衰变后变成 单态, 纠缠度为零; 两个衰变不存在; 剩余两个衰变后纠缠度发生了变化. 此外在带电(K)和中性(Ki0)两类K型混合介子态的六种可能的衰变中, 两种类型的末态的纠缠度两两相同. (iii)三种混合介子态之间可以通过Ī, Ŭ和V算子循环转化, 具有明显的对称性. 本文从具有的对称性上提供了一种探索混合介子态可能衰变的方法, 并且可以用此方法去预测可能的未知衰变粒子和解释已测得的衰变问题.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回