搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹片上系统和基于微纳结构的太赫兹超宽谱源的研究进展

左剑 张亮亮 巩辰 张存林

太赫兹片上系统和基于微纳结构的太赫兹超宽谱源的研究进展

左剑, 张亮亮, 巩辰, 张存林
PDF
导出引用
  • 目前太赫兹辐射信号的功率不高, 辐射带宽也较窄, 这些对于生化、含能材料的太赫兹检测应用领域来说是一大限制因素, 因此如何获得宽谱高功率的太赫兹源对于太赫兹时域光谱系统的发展是非常重要的; 另一方面, 常规的太赫兹系统是在自由空间传输探测的, 测量过程需要在氮气或者干燥空气环境中进行, 以克服空气中水的吸收干扰, 同时自由空间中的光场与物质相互作用的模式又降低了物质检测的灵敏度, 这对于痕量物质检测运用来说构成了一个挑战. 面对这一问题, 太赫兹片上系统利用微纳结构中的局域场效应实现对物质的低浓度检测, 这一方案可以有助于解决这一应用难题. 综上所述, 本文分成以下两部分阐述: 首先阐述了纳米金属薄膜作为新的太赫兹源, 它可以同时产生非相干的和相干的太赫兹信号, 其输出为超过100 THz的太赫兹-红外辐射, 功率能高达10 mW, 这超宽谱和高功率现象主要是由于非相干的热辐射效应引起的; 第二, 阐述了基于不同传输线结构、不同基底材料的太赫兹片上系统结构设计和光谱应用. 基于共面带状线结构和聚合物材料基底的太赫兹片上系统有着较低的损耗, 能够实现超过2 THz带宽的测量和生化应用.
      通信作者: 张存林, cunlin_zhang@cnu.edu.cn
    • 基金项目: 国家重大科学仪器设备开发专项(批准号: 2012YQ140005)、国家自然科学基金(批准号: 11204190, 11374007, 11274233)和国家重点基础研究发展计划(批准号: 2014CB339806-1) 资助的课题.
    [1]

    Mller A, Marschall S, Jensen O B, Fricke J, Wenzel H, Sumpf B, Andersen P E 2013 Laser Photon. Rev. 7 605

    [2]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G S, Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol. 1 54

    [3]

    Shumyatsky P, Alfano R R 2011 J. Biomed. Opt. 16 033001

    [4]

    Yeh K L, Hoffmann M C, Hebling J, Nelson K A 2007 Appl. Phys. Lett. 90 171121

    [5]

    Stepanov A G, Bonacina L, Chekalin S V, Wolf J P 2008 Opt. Lett. 33 2497

    [6]

    Hirori H, Doi A, Blanchard F, Tanaka K 2011 Appl. Phys. Lett. 98 091106

    [7]

    Park S G, Weiner A M, Melloch M R, Sider C W, Sider J L, Taylor A J 1999 IEEE J. Quant. Electron. 35 1257

    [8]

    Cook D J, Hochstrasser R M 2000 Opt. Lett. 25 1210

    [9]

    Xie X, Dai J, Zhang X C 2006 Phys. Rev. Lett. 96 075005

    [10]

    Kim K Y, Taylor A J, Glownia J H, Rodriguez G 2008 Nat. Photon. 2 605

    [11]

    Suvorov E V, Akhmedzhanov R A, Fadeev D A, Ilyakov I E, Mironov V A, Shishkin B V 2012 Opt. Lett. 37 2520

    [12]

    Kadlec F, Kuzel P, Coutaz J L 2012 Opt. Lett. 29 2674

    [13]

    Kadlec F, Kuzel P, Coutaz J L 2015 Opt. Lett. 30 1402

    [14]

    Ramakrishnan G, Planken P C M 2011 Opt. Lett. 36 2572

    [15]

    Welsh G H, Wynne K 2009 Opt. Express 17 2470

    [16]

    Welsh G H, Hunt N T, Wynne K 2007 Phys. Rev. Lett. 98 026803

    [17]

    Garwe F, Schmidt A, Zieger G, May T, Wynne K, Mller U, Zeisberger M, Paa W, Stafast H, Meyer H G 2011 Appl. Phys. B 102 551

    [18]

    Schmidt A, Garwe F, Hubner U, May T, Paa W, Zeisberger M, Zieger G, Stafast H 2012 Appl. Phys. B 109 631

    [19]

    Polyushkin D, Hendry E, Stone E, Barnes W 2011 Nano Lett. 11 4718

    [20]

    Ramakrishnan G, Kumar N, Planken P C M, Tanaka D, Kajikawa K 2012 Opt. Express 20 4067

    [21]

    Gao Y, Chen M K, Yang C E, Chang Y C, Yin S, Hui R, Ruffin P, Brantley C, Edwards E, Luo C 2009 J. Appl. Phys. 106 074302

    [22]

    Moskovits M 1985 Rev. Mod. Phys. 57 783

    [23]

    Zabel H, Stroud D 1992 Phy. Rev. B 46 8132

    [24]

    Aeschlimann M, Schmuttenmaer C A, Elsayed A H E, Miller R J D, Cao J, Gao Y, Mantell D A 1995 J. Chem. Phys. 102 8606

    [25]

    Vorobyev A Y, Guo C 2011 Nat. Sci. 3 488

    [26]

    Vorobyev A, Guo C 2006 Opt. Express 14 13113

    [27]

    Vorobyev A, Guo C 2005 Appl. Phy. Lett. 86 011916

    [28]

    Cunningham J, Byrne M B, Wood C D, Dazhang L 2010 Electron. Lett. 46 34

    [29]

    Le Ru E C, Blackie E, Meyer M, Etchegoin P G 2007 J. Phys. Chem. C 111 13794

    [30]

    Zhang L L, Mu K J, Zhou Y S, Wang H, Zhang C L, Zhang X C 2015 Sci. Rep. 5 12536

    [31]

    Vicario C, Monoszlai B, Jazbinsek M, Lee S H, Kwon O P, Hauri C P 2014 arXiv: 1407.7100 [physics. optics]

    [32]

    Li C Y, Seletskiy D V, Yang Z, Sheik-Bahae M 2015 Opt. Express 23 11436

    [33]

    Luo L, Chatzakis I, Wang J, Niesler F B P, Wegener M, Koschny T, Soukoulis C M 2014 Nat. Commun. 5 3055

    [34]

    Byrne M B, Cunningham J, Tych K, Burnett A D, Stringer M R, Wood C D, Dazhang L, Lachab M, Linfield E H, Davies A G 2008 Appl. Phys. Lett. 93 182904

    [35]

    Ohkubo T, Onuma M, Kitagawa J, Kadoya Y 2006 Appl. Phys. Lett. 88 212511

    [36]

    Byrne M B, Cunningham J, Tych K, Burnett A D, Stringer M R, Wood C D, Dazhang L, Lachab M, Linfield E H, Davies A G 2012 Opt. Express 20 8466

    [37]

    Auston D H, Smith P R 1982 Appl. Phys. Lett. 41 599

    [38]

    Ketchen M B, Grischkowsky D, Chen T C, Chi C C, Duling III I N, Halas N J, Halbout J M, Li G P 1986 Appl. Phys. Lett. 48 751

    [39]

    Heiliger H M, Vollebfirger B, Roskos H G, Heyt R, Ploogt K, Kurz H 1996 Appl. Phys. Lett. 69 2903

    [40]

    Russell C, Wood C D, Dazhang L, Burnett A D, Li L H, Linfield E H, Davies A G, Cunningham J E 2011 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) Houston, USA, October 2-7, 2011 p1

    [41]

    Baras T, Kleine-Ostmann T, Koch M 2003 J. Biol. Phys. 29 187

    [42]

    Yanagi S, Onuma M, Kitagawa J, Kadoya Y 2008 Appl. Phys. Express 1 012009

    [43]

    Kasai S, Tanabashi A, Kajiki K, Itsuji T, Kurosaka R, Yoneyama H, Yamashita M, Ito H, Ouchi T 2009 Appl. Phys. Express 2 062401

  • [1]

    Mller A, Marschall S, Jensen O B, Fricke J, Wenzel H, Sumpf B, Andersen P E 2013 Laser Photon. Rev. 7 605

    [2]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G S, Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol. 1 54

    [3]

    Shumyatsky P, Alfano R R 2011 J. Biomed. Opt. 16 033001

    [4]

    Yeh K L, Hoffmann M C, Hebling J, Nelson K A 2007 Appl. Phys. Lett. 90 171121

    [5]

    Stepanov A G, Bonacina L, Chekalin S V, Wolf J P 2008 Opt. Lett. 33 2497

    [6]

    Hirori H, Doi A, Blanchard F, Tanaka K 2011 Appl. Phys. Lett. 98 091106

    [7]

    Park S G, Weiner A M, Melloch M R, Sider C W, Sider J L, Taylor A J 1999 IEEE J. Quant. Electron. 35 1257

    [8]

    Cook D J, Hochstrasser R M 2000 Opt. Lett. 25 1210

    [9]

    Xie X, Dai J, Zhang X C 2006 Phys. Rev. Lett. 96 075005

    [10]

    Kim K Y, Taylor A J, Glownia J H, Rodriguez G 2008 Nat. Photon. 2 605

    [11]

    Suvorov E V, Akhmedzhanov R A, Fadeev D A, Ilyakov I E, Mironov V A, Shishkin B V 2012 Opt. Lett. 37 2520

    [12]

    Kadlec F, Kuzel P, Coutaz J L 2012 Opt. Lett. 29 2674

    [13]

    Kadlec F, Kuzel P, Coutaz J L 2015 Opt. Lett. 30 1402

    [14]

    Ramakrishnan G, Planken P C M 2011 Opt. Lett. 36 2572

    [15]

    Welsh G H, Wynne K 2009 Opt. Express 17 2470

    [16]

    Welsh G H, Hunt N T, Wynne K 2007 Phys. Rev. Lett. 98 026803

    [17]

    Garwe F, Schmidt A, Zieger G, May T, Wynne K, Mller U, Zeisberger M, Paa W, Stafast H, Meyer H G 2011 Appl. Phys. B 102 551

    [18]

    Schmidt A, Garwe F, Hubner U, May T, Paa W, Zeisberger M, Zieger G, Stafast H 2012 Appl. Phys. B 109 631

    [19]

    Polyushkin D, Hendry E, Stone E, Barnes W 2011 Nano Lett. 11 4718

    [20]

    Ramakrishnan G, Kumar N, Planken P C M, Tanaka D, Kajikawa K 2012 Opt. Express 20 4067

    [21]

    Gao Y, Chen M K, Yang C E, Chang Y C, Yin S, Hui R, Ruffin P, Brantley C, Edwards E, Luo C 2009 J. Appl. Phys. 106 074302

    [22]

    Moskovits M 1985 Rev. Mod. Phys. 57 783

    [23]

    Zabel H, Stroud D 1992 Phy. Rev. B 46 8132

    [24]

    Aeschlimann M, Schmuttenmaer C A, Elsayed A H E, Miller R J D, Cao J, Gao Y, Mantell D A 1995 J. Chem. Phys. 102 8606

    [25]

    Vorobyev A Y, Guo C 2011 Nat. Sci. 3 488

    [26]

    Vorobyev A, Guo C 2006 Opt. Express 14 13113

    [27]

    Vorobyev A, Guo C 2005 Appl. Phy. Lett. 86 011916

    [28]

    Cunningham J, Byrne M B, Wood C D, Dazhang L 2010 Electron. Lett. 46 34

    [29]

    Le Ru E C, Blackie E, Meyer M, Etchegoin P G 2007 J. Phys. Chem. C 111 13794

    [30]

    Zhang L L, Mu K J, Zhou Y S, Wang H, Zhang C L, Zhang X C 2015 Sci. Rep. 5 12536

    [31]

    Vicario C, Monoszlai B, Jazbinsek M, Lee S H, Kwon O P, Hauri C P 2014 arXiv: 1407.7100 [physics. optics]

    [32]

    Li C Y, Seletskiy D V, Yang Z, Sheik-Bahae M 2015 Opt. Express 23 11436

    [33]

    Luo L, Chatzakis I, Wang J, Niesler F B P, Wegener M, Koschny T, Soukoulis C M 2014 Nat. Commun. 5 3055

    [34]

    Byrne M B, Cunningham J, Tych K, Burnett A D, Stringer M R, Wood C D, Dazhang L, Lachab M, Linfield E H, Davies A G 2008 Appl. Phys. Lett. 93 182904

    [35]

    Ohkubo T, Onuma M, Kitagawa J, Kadoya Y 2006 Appl. Phys. Lett. 88 212511

    [36]

    Byrne M B, Cunningham J, Tych K, Burnett A D, Stringer M R, Wood C D, Dazhang L, Lachab M, Linfield E H, Davies A G 2012 Opt. Express 20 8466

    [37]

    Auston D H, Smith P R 1982 Appl. Phys. Lett. 41 599

    [38]

    Ketchen M B, Grischkowsky D, Chen T C, Chi C C, Duling III I N, Halas N J, Halbout J M, Li G P 1986 Appl. Phys. Lett. 48 751

    [39]

    Heiliger H M, Vollebfirger B, Roskos H G, Heyt R, Ploogt K, Kurz H 1996 Appl. Phys. Lett. 69 2903

    [40]

    Russell C, Wood C D, Dazhang L, Burnett A D, Li L H, Linfield E H, Davies A G, Cunningham J E 2011 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) Houston, USA, October 2-7, 2011 p1

    [41]

    Baras T, Kleine-Ostmann T, Koch M 2003 J. Biol. Phys. 29 187

    [42]

    Yanagi S, Onuma M, Kitagawa J, Kadoya Y 2008 Appl. Phys. Express 1 012009

    [43]

    Kasai S, Tanabashi A, Kajiki K, Itsuji T, Kurosaka R, Yoneyama H, Yamashita M, Ito H, Ouchi T 2009 Appl. Phys. Express 2 062401

  • [1] 许涌, 张帆, 张晓强, 杜寅昌, 赵海慧, 聂天晓, 吴晓君, 赵巍胜. 自旋电子太赫兹源研究进展. 物理学报, 2020, 69(20): 200703. doi: 10.7498/aps.69.20200623
    [2] 刘维浩, 张雅鑫, 胡旻, 周俊, 刘盛纲. 基于场致发射阴极阵列的太赫兹源的物理机理研究. 物理学报, 2012, 61(12): 127901. doi: 10.7498/aps.61.127901
    [3] 黄敬国, 陆金星, 周炜, 童劲超, 黄志明, 褚君浩. 磷化镓高功率太赫兹共线差频源的研究. 物理学报, 2013, 62(12): 120704. doi: 10.7498/aps.62.120704
    [4] 马凤英, 陈明, 刘晓莉, 刘建立, 池泉, 杜艳丽, 郭茂田, 袁斌. 太赫兹波段微腔器件的设计及其特性研究. 物理学报, 2012, 61(11): 114205. doi: 10.7498/aps.61.114205
    [5] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月. 差频可调谐太赫兹技术的新进展. 物理学报, 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [6] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [7] 高鹏, Booske John H., 杨中海, 李斌, 徐立, 何俊, 宫玉彬, 田忠. 太赫兹折叠波导行波管再生反馈振荡器非线性理论与模拟. 物理学报, 2010, 59(12): 8484-8489. doi: 10.7498/aps.59.8484
    [8] 赵文娟, 陈再高, 郭伟杰. 慢波结构爆炸发射对高功率太赫兹表面波振荡器的影响. 物理学报, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [9] 刘维浩, 张雅鑫, 周俊, 龚森, 刘盛纲. 偏心电子注激励周期加载波导角向非对称模衍射辐射. 物理学报, 2012, 61(23): 234209. doi: 10.7498/aps.61.234209
    [10] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [11] 张显斌, 施 卫. 基于可调谐准高斯波束太赫兹源的成像系统研究. 物理学报, 2008, 57(8): 4984-4990. doi: 10.7498/aps.57.4984
    [12] 祁春超, 欧阳征标. 基于600—2000 nm抽运源的太赫兹相干光源的最新进展. 物理学报, 2011, 60(9): 090704. doi: 10.7498/aps.60.090704
    [13] 梁文龙, 王亦曼, 刘伟, 李洪义, 王金淑. 用于真空电子太赫兹器件的微型热阴极电子束源研究. 物理学报, 2014, 63(5): 057901. doi: 10.7498/aps.63.057901
    [14] 任泽平, 陈再高, 陈剑楠, 乔海亮. 频率色散表面阻抗对真空电子太赫兹源的影响. 物理学报, 2020, 69(4): 040701. doi: 10.7498/aps.69.20191488
    [15] 李金锋, 万婷, 王腾飞, 周文辉, 莘杰, 陈长水. 太赫兹量子级联激光器中有源区上激发态电子向高能级泄漏的研究. 物理学报, 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [16] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取. 物理学报, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [17] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [18] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [19] 李绍和, 李九生, 孙建忠. 太赫兹频率编码器. 物理学报, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [20] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志. 基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究. 物理学报, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1460
  • PDF下载量:  587
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-13
  • 修回日期:  2015-12-08
  • 刊出日期:  2016-01-05

太赫兹片上系统和基于微纳结构的太赫兹超宽谱源的研究进展

  • 1. 太赫兹光电子学教育部重点实验室, 首都师范大学物理系, 北京 100048
  • 通信作者: 张存林, cunlin_zhang@cnu.edu.cn
    基金项目: 

    国家重大科学仪器设备开发专项(批准号: 2012YQ140005)、国家自然科学基金(批准号: 11204190, 11374007, 11274233)和国家重点基础研究发展计划(批准号: 2014CB339806-1) 资助的课题.

摘要: 目前太赫兹辐射信号的功率不高, 辐射带宽也较窄, 这些对于生化、含能材料的太赫兹检测应用领域来说是一大限制因素, 因此如何获得宽谱高功率的太赫兹源对于太赫兹时域光谱系统的发展是非常重要的; 另一方面, 常规的太赫兹系统是在自由空间传输探测的, 测量过程需要在氮气或者干燥空气环境中进行, 以克服空气中水的吸收干扰, 同时自由空间中的光场与物质相互作用的模式又降低了物质检测的灵敏度, 这对于痕量物质检测运用来说构成了一个挑战. 面对这一问题, 太赫兹片上系统利用微纳结构中的局域场效应实现对物质的低浓度检测, 这一方案可以有助于解决这一应用难题. 综上所述, 本文分成以下两部分阐述: 首先阐述了纳米金属薄膜作为新的太赫兹源, 它可以同时产生非相干的和相干的太赫兹信号, 其输出为超过100 THz的太赫兹-红外辐射, 功率能高达10 mW, 这超宽谱和高功率现象主要是由于非相干的热辐射效应引起的; 第二, 阐述了基于不同传输线结构、不同基底材料的太赫兹片上系统结构设计和光谱应用. 基于共面带状线结构和聚合物材料基底的太赫兹片上系统有着较低的损耗, 能够实现超过2 THz带宽的测量和生化应用.

English Abstract

参考文献 (43)

目录

    /

    返回文章
    返回