搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摩擦点火Ti-V-Cr阻燃钛合金燃烧产物的组织特征

弭光宝 黄旭 曹京霞 王宝 曹春晓

摩擦点火Ti-V-Cr阻燃钛合金燃烧产物的组织特征

弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓
PDF
导出引用
导出核心图
  • 采用摩擦氧浓度实验方法, 结合原位观察、扫描电镜、能谱仪和X-射线衍射分析, 系统研究Ti-V-Cr 阻燃钛合金燃烧产物的微观组织形貌、燃烧反应过程的合金元素分布规律及微观机理. 结果表明: Ti-V-Cr 阻燃钛合金燃烧过程发出闪亮耀眼的白光, 具有典型金属燃烧的火焰特征. 燃烧产物主要有TiO2, V2O5和Cr2O3三种氧化物, 该混合氧化物以分散颗粒和致密连续体存在. 分散颗粒为规则的球形; 致密连续燃烧产物的微观组织具有分区特征, 从合金基体至燃烧表面依次为过渡区、热影响区、熔凝区和燃烧区. 其中, 过渡区存在一些微小的颗粒状凸起, 且有一定方向性; 热影响区中形成大量V基固溶体相和少量的Ti基固溶体相, V基固溶体相上存在Ti的含量远高于基体的针状析出物; 熔凝区中, 大量的Ti基固溶体中存在少量的V基固溶体; 燃烧区主要为Ti, V和Cr的氧化物混合物. 热影响区的V基固溶体相降低了Ti元素向熔凝区的迁移速率, 减慢了燃烧区Ti与O的优先反应; 燃烧区形成的TiO2, V2O5和Cr2O3混合氧化物和熔凝区O在Ti中大量固溶共同终止了O向合金基体的继续扩散, 从而使Ti-V-Cr阻燃钛合金表现出优异的阻燃功能性.
      通信作者: 弭光宝, miguangbao@163.com
    • 基金项目: 国家自然科学基金 (批准号: 51471155) 和航空科学基金 (批准号: 20123021004) 资助的课题.
    [1]

    Hочовнaя Н A, Aлексеев Е Б, Изотовa A Ю, Hо-вaк A Б 2012 Tumaн 4 42

    [2]

    Strobridge T R, Moulder J C, Clark A F 1979 Titanium Combustion in Turbine Engines (Springfield: National Technical Information Service) FAA-RD-79-51 p15

    [3]

    Huang X, Cao C X, Ma J M, Wang B, Gao Y 1997 J. Mater. Eng. 8 11 (in Chinese) [黄旭, 曹春晓, 马济民, 王宝, 高扬 1997 材料工程 8 11]

    [4]

    Luo Q S, Li S F, Pei H P 2012 J. Aerospace Power 27 2763 (in Chinese) [罗秋生, 李世峰, 裴会平 2012 航空动力学报 27 2763]

    [5]

    Berczik D M US Patent 5 176 762 [1993-01-05]

    [6]

    Steve T, Craig W 1995 Adv. Mater. Process. 4 23

    [7]

    Anderson V, Manty B 1978 Titanium Alloy Ignition and Combustion (Florida: Pratt & Whitney Aircraft Group) 76083-30 p10

    [8]

    Борисова Е А, Скляров Н М 2007 Авиационные материалы и технологи: Выпуск Горение и пожаробезопасность титановых сплавов (Москва: ВИАМ) p21

    [9]

    Cao C X 2006 International Aviation 8 59 (in Chinese) [曹春晓 2006 国际航空 8 59]

    [10]

    Cao J X, Huang X, Mi G B, Sha A X, Wang B 2014 J. Aeronaut. Mater. 34 92 (in Chinese) [曹京霞, 黄旭, 弭光宝, 沙爱学, 王宝 2014 航空材料学报 34 92]

    [11]

    Huang X, Zhu Z S, Wang H H 2012 Advanced Aeronautical Titanium Alloys and Applications (Beijing: National Defense Industry Press) p276 [黄旭, 朱知寿, 王红红 2012 先进航空钛合金材料与应用 (北京: 国防工业出版社) 第276页]

    [12]

    Zhao Y Q, Zhou L, Deng J 1999 Rare Metal Mater. Eng. 28 77 (in Chinese) [赵永庆, 周廉, 邓炬 1999 稀有金属材料与工程 28 77]

    [13]

    Littman F E, Church F M, Kinderman E M 1961 Journal of the Less-Common Metals 3 367

    [14]

    Merzhanov A G 1975 Aiaa J. 13 209

    [15]

    Khaikin B I, Bloshenko V N, Merzhanov A G 1970 Combustion, Explosion and Shock Waves 6 412

    [16]

    Rozenband V I 2004 Combustion and Flame 137 366

    [17]

    Beloni E, Dreizin E L 2011 Combust. Sci. Tech. 183 823

    [18]

    Shafirovich E, Teoh S K, Varma A 2008 Combustion and Flame 152 262

    [19]

    Брейтер А Л, Мальцев В М, Попов Е И 1977 Физика горения и взрыва 13 558

    [20]

    Болобов В И 2002 Физика горения и взрыва 38 1

    [21]

    Болобов В И, Шнеерсон Я М, Лапин А Ю 2011 Цветные металлы 12 98

    [22]

    Mi G B, Huang X, Cao J X, Wang B, Cao C X China Patent ZL201218003649.0 [2012-09-04] (in Chinese) [弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 中国专利 ZL201218003649.0 2012-09-04]

    [23]

    Mi G B, Huang X, Cao J X, Cao C X 2014 Acta Metall. Sin. 50 575 (in Chinese) [弭光宝, 黄旭, 曹京霞, 曹春晓 2014 金属学报 50 575]

    [24]

    Mi G B, Cao C X, Huang X, Cao J X, Wang B 2014 J. Aeronaut. Mater. 34 83 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝 2014 航空材料学报 34 83]

    [25]

    Mi G B, Cao C X, Huang X, Cao J X, Wang B, Sui Nan 2016 J. Mater. Eng. 44 1 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝, 隋楠 2016 材料工程 44 1]

    [26]

    Mi G B, Huang X, Cao J X, Cao C X Huang X S 2013 Trans. Nonferrous Met. Soc. China 23 2270

    [27]

    Mi G B, Huang X S, Li P J, Cao J X, Huang X, Cao C X 2012 Trans. Nonferrous Met. Soc. China 22 2409

    [28]

    Yang Z N, Liu Q, Zhu Z Q, Zhang J, Liu Q J 2009 Mater. Sci. Eng. Powder Metall. 14 63 (in Chinese) [杨贞妮, 刘强, 朱忠其, 张瑾, 柳清菊 2009 粉末冶金材料科学与工程 14 63]

    [29]

    Xu L, Tang C Q, Huang Z B 2010 Acta Phys. Chim. Sin. 26 1401 (in Chinese) [徐凌, 唐超群, 黄宗斌 2010 物理化学学报 26 1401]

    [30]

    Chen J, Yan F N, Liang L P, Liu T Y, Geng T 2011 J. Synthetic Crystals 40 758 (in Chinese) [陈俊, 严非男, 梁丽萍, 刘廷禹, 耿滔 2011 人工晶体学报 40 758]

    [31]

    Li S X, Wan R F, Yang S W, Long Y 2011 Progress Report on China Nuclear Sci. Tech. 2 133 (in Chinese) [李顺兴, 万荣发, 杨善武, 龙毅 2011中国核科学技术进展报告 2 133]

    [32]

    Лякишев Н П 1996 Диаграммы состояния двойных метоллических систем (Москва: Машиностроение) p397

    [33]

    Kubaschewski O, Hopkins E B 1962 Oxidation of Metals and Alloys (London: Butterworths) p73

    [34]

    Birks N, Meier G H, Pettit F S 2009 Introduction to the High Temperature Oxidation of Metals (London: Cambridge University Press) p31

    [35]

    Каракозов Э С 1977 Диффузионная сварка титана (Москва: Металлургия) p58

    [36]

    Froes F H, Caplan I 1993 Titanium'92: Science and Technology (Warrendale: TMS) p2819

    [37]

    Popel P S, Calvo-Dahlborg M, Dahlborg U 2007 J. Non-Cryst. Solids 353 3243

    [38]

    Mi G B, Li P J, Huang X, Cao C X 2012 Acta Phys. Sin. 61 186106 (in Chinese) [弭光宝, 李培杰, 黄旭, 曹春晓 2012 物理学报 61 186106]

    [39]

    Stephen R T 2000 An Introduction to Combustion: Concepts and Application (New York: McGraw-Hill Higher Education) p125

  • [1]

    Hочовнaя Н A, Aлексеев Е Б, Изотовa A Ю, Hо-вaк A Б 2012 Tumaн 4 42

    [2]

    Strobridge T R, Moulder J C, Clark A F 1979 Titanium Combustion in Turbine Engines (Springfield: National Technical Information Service) FAA-RD-79-51 p15

    [3]

    Huang X, Cao C X, Ma J M, Wang B, Gao Y 1997 J. Mater. Eng. 8 11 (in Chinese) [黄旭, 曹春晓, 马济民, 王宝, 高扬 1997 材料工程 8 11]

    [4]

    Luo Q S, Li S F, Pei H P 2012 J. Aerospace Power 27 2763 (in Chinese) [罗秋生, 李世峰, 裴会平 2012 航空动力学报 27 2763]

    [5]

    Berczik D M US Patent 5 176 762 [1993-01-05]

    [6]

    Steve T, Craig W 1995 Adv. Mater. Process. 4 23

    [7]

    Anderson V, Manty B 1978 Titanium Alloy Ignition and Combustion (Florida: Pratt & Whitney Aircraft Group) 76083-30 p10

    [8]

    Борисова Е А, Скляров Н М 2007 Авиационные материалы и технологи: Выпуск Горение и пожаробезопасность титановых сплавов (Москва: ВИАМ) p21

    [9]

    Cao C X 2006 International Aviation 8 59 (in Chinese) [曹春晓 2006 国际航空 8 59]

    [10]

    Cao J X, Huang X, Mi G B, Sha A X, Wang B 2014 J. Aeronaut. Mater. 34 92 (in Chinese) [曹京霞, 黄旭, 弭光宝, 沙爱学, 王宝 2014 航空材料学报 34 92]

    [11]

    Huang X, Zhu Z S, Wang H H 2012 Advanced Aeronautical Titanium Alloys and Applications (Beijing: National Defense Industry Press) p276 [黄旭, 朱知寿, 王红红 2012 先进航空钛合金材料与应用 (北京: 国防工业出版社) 第276页]

    [12]

    Zhao Y Q, Zhou L, Deng J 1999 Rare Metal Mater. Eng. 28 77 (in Chinese) [赵永庆, 周廉, 邓炬 1999 稀有金属材料与工程 28 77]

    [13]

    Littman F E, Church F M, Kinderman E M 1961 Journal of the Less-Common Metals 3 367

    [14]

    Merzhanov A G 1975 Aiaa J. 13 209

    [15]

    Khaikin B I, Bloshenko V N, Merzhanov A G 1970 Combustion, Explosion and Shock Waves 6 412

    [16]

    Rozenband V I 2004 Combustion and Flame 137 366

    [17]

    Beloni E, Dreizin E L 2011 Combust. Sci. Tech. 183 823

    [18]

    Shafirovich E, Teoh S K, Varma A 2008 Combustion and Flame 152 262

    [19]

    Брейтер А Л, Мальцев В М, Попов Е И 1977 Физика горения и взрыва 13 558

    [20]

    Болобов В И 2002 Физика горения и взрыва 38 1

    [21]

    Болобов В И, Шнеерсон Я М, Лапин А Ю 2011 Цветные металлы 12 98

    [22]

    Mi G B, Huang X, Cao J X, Wang B, Cao C X China Patent ZL201218003649.0 [2012-09-04] (in Chinese) [弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 中国专利 ZL201218003649.0 2012-09-04]

    [23]

    Mi G B, Huang X, Cao J X, Cao C X 2014 Acta Metall. Sin. 50 575 (in Chinese) [弭光宝, 黄旭, 曹京霞, 曹春晓 2014 金属学报 50 575]

    [24]

    Mi G B, Cao C X, Huang X, Cao J X, Wang B 2014 J. Aeronaut. Mater. 34 83 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝 2014 航空材料学报 34 83]

    [25]

    Mi G B, Cao C X, Huang X, Cao J X, Wang B, Sui Nan 2016 J. Mater. Eng. 44 1 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝, 隋楠 2016 材料工程 44 1]

    [26]

    Mi G B, Huang X, Cao J X, Cao C X Huang X S 2013 Trans. Nonferrous Met. Soc. China 23 2270

    [27]

    Mi G B, Huang X S, Li P J, Cao J X, Huang X, Cao C X 2012 Trans. Nonferrous Met. Soc. China 22 2409

    [28]

    Yang Z N, Liu Q, Zhu Z Q, Zhang J, Liu Q J 2009 Mater. Sci. Eng. Powder Metall. 14 63 (in Chinese) [杨贞妮, 刘强, 朱忠其, 张瑾, 柳清菊 2009 粉末冶金材料科学与工程 14 63]

    [29]

    Xu L, Tang C Q, Huang Z B 2010 Acta Phys. Chim. Sin. 26 1401 (in Chinese) [徐凌, 唐超群, 黄宗斌 2010 物理化学学报 26 1401]

    [30]

    Chen J, Yan F N, Liang L P, Liu T Y, Geng T 2011 J. Synthetic Crystals 40 758 (in Chinese) [陈俊, 严非男, 梁丽萍, 刘廷禹, 耿滔 2011 人工晶体学报 40 758]

    [31]

    Li S X, Wan R F, Yang S W, Long Y 2011 Progress Report on China Nuclear Sci. Tech. 2 133 (in Chinese) [李顺兴, 万荣发, 杨善武, 龙毅 2011中国核科学技术进展报告 2 133]

    [32]

    Лякишев Н П 1996 Диаграммы состояния двойных метоллических систем (Москва: Машиностроение) p397

    [33]

    Kubaschewski O, Hopkins E B 1962 Oxidation of Metals and Alloys (London: Butterworths) p73

    [34]

    Birks N, Meier G H, Pettit F S 2009 Introduction to the High Temperature Oxidation of Metals (London: Cambridge University Press) p31

    [35]

    Каракозов Э С 1977 Диффузионная сварка титана (Москва: Металлургия) p58

    [36]

    Froes F H, Caplan I 1993 Titanium'92: Science and Technology (Warrendale: TMS) p2819

    [37]

    Popel P S, Calvo-Dahlborg M, Dahlborg U 2007 J. Non-Cryst. Solids 353 3243

    [38]

    Mi G B, Li P J, Huang X, Cao C X 2012 Acta Phys. Sin. 61 186106 (in Chinese) [弭光宝, 李培杰, 黄旭, 曹春晓 2012 物理学报 61 186106]

    [39]

    Stephen R T 2000 An Introduction to Combustion: Concepts and Application (New York: McGraw-Hill Higher Education) p125

  • [1] 赵代平, 荆 涛, 柳百成. 相场方法模拟铝合金三维枝晶生长. 物理学报, 2003, 52(7): 1737-1742. doi: 10.7498/aps.52.1737
    [2] 丁勇, 陈仁杰, 郭帅, 刘兴民, 李东, 闫阿儒. 添加Dy元素对钕铁硼速凝片微观组织和磁特性的影响. 物理学报, 2011, 60(5): 057103. doi: 10.7498/aps.60.057103
    [3] 游家学, 王锦程, 王理林, 王志军, 李俊杰, 林鑫. 悬浮液凝固研究进展. 物理学报, 2019, 68(1): 018101. doi: 10.7498/aps.68.20181645
    [4] 冯力, 王智平, 肖荣振, 朱昌盛. 三维枝晶生长的相场法数值模拟研究. 物理学报, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [5] 刘贵立. Mg-Zr合金微观组织电子结构研究. 物理学报, 2008, 57(2): 1043-1047. doi: 10.7498/aps.57.1043
    [6] 刘贵立. 镁合金稀土阻燃机理电子理论研究. 物理学报, 2008, 57(1): 434-437. doi: 10.7498/aps.57.434
    [7] 杨亮, 魏承炀, 雷力明, 李臻熙, 李赛毅. 两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟. 物理学报, 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [8] 刘涛, 郭朝晖, 李岫梅, 李卫. 微观组织结构对铂钴永磁合金磁性能的影响. 物理学报, 2009, 58(3): 2030-2034. doi: 10.7498/aps.58.2030
    [9] 李蕊, 左小伟, 王恩刚. 时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度. 物理学报, 2017, 66(2): 027401. doi: 10.7498/aps.66.027401
    [10] 杨 森, 苏云鹏, 黄卫东, 周尧和. 激光快速凝固条件下Cu-31.4%Mn合金的微观组织特征. 物理学报, 2003, 52(1): 81-86. doi: 10.7498/aps.52.81
    [11] 张国英, 张 辉, 方戈亮, 李昱材. Bi,Sb合金化对AZ91镁合金组织、性能影响机理研究. 物理学报, 2005, 54(11): 5288-5292. doi: 10.7498/aps.54.5288
    [12] 郭玉福, 李荣德, 刘贵立. Ca,Be在镁合金中的阻燃作用. 物理学报, 2009, 58(5): 3315-3318. doi: 10.7498/aps.58.3315
    [13] 刘贵立, 李勇. 钛铝合金高温氧化机理电子理论研究. 物理学报, 2012, 61(17): 177101. doi: 10.7498/aps.61.177101
    [14] 张家泰, 何斌, 贺贤土, 常铁强, 许林宝, N.E.安德列夫. 激光聚变快点火机理研究. 物理学报, 2001, 50(5): 921-925. doi: 10.7498/aps.50.921
    [15] 李志强, 王伟丽, 翟薇, 魏炳波. 快速凝固Fe62.1Sn27.9Si10合金的分层组织和偏晶胞形成机理. 物理学报, 2011, 60(10): 108101. doi: 10.7498/aps.60.108101
    [16] 侯兆阳, 刘让苏, 田泽安, 刘丽霞. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究. 物理学报, 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [17] 梁永超, 刘让苏, 朱轩民, 周丽丽, 田泽安, 刘全慧. 液态Mg7Zn3合金快速凝固过程中微观结构演变机理的模拟研究. 物理学报, 2010, 59(11): 7930-7940. doi: 10.7498/aps.59.7930
    [18] 梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓. 钛合金高温摩擦着火理论研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200304
    [19] 朱洪强, 冯庆. 光学气敏材料金红石相二氧化钛(110)面吸附CO分子的微观特性机理研究. 物理学报, 2014, 63(13): 133101. doi: 10.7498/aps.63.133101
    [20] 夏瑱超, 王伟丽, 罗盛宝, 魏炳波. 三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究. 物理学报, 2016, 65(15): 158101. doi: 10.7498/aps.65.158101
  • 引用本文:
    Citation:
计量
  • 文章访问数:  875
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-29
  • 修回日期:  2015-12-25
  • 刊出日期:  2016-03-05

摩擦点火Ti-V-Cr阻燃钛合金燃烧产物的组织特征

  • 1. 北京航空材料研究院, 先进钛合金航空科技重点实验室, 北京 100095
  • 通信作者: 弭光宝, miguangbao@163.com
    基金项目: 

    国家自然科学基金 (批准号: 51471155) 和航空科学基金 (批准号: 20123021004) 资助的课题.

摘要: 采用摩擦氧浓度实验方法, 结合原位观察、扫描电镜、能谱仪和X-射线衍射分析, 系统研究Ti-V-Cr 阻燃钛合金燃烧产物的微观组织形貌、燃烧反应过程的合金元素分布规律及微观机理. 结果表明: Ti-V-Cr 阻燃钛合金燃烧过程发出闪亮耀眼的白光, 具有典型金属燃烧的火焰特征. 燃烧产物主要有TiO2, V2O5和Cr2O3三种氧化物, 该混合氧化物以分散颗粒和致密连续体存在. 分散颗粒为规则的球形; 致密连续燃烧产物的微观组织具有分区特征, 从合金基体至燃烧表面依次为过渡区、热影响区、熔凝区和燃烧区. 其中, 过渡区存在一些微小的颗粒状凸起, 且有一定方向性; 热影响区中形成大量V基固溶体相和少量的Ti基固溶体相, V基固溶体相上存在Ti的含量远高于基体的针状析出物; 熔凝区中, 大量的Ti基固溶体中存在少量的V基固溶体; 燃烧区主要为Ti, V和Cr的氧化物混合物. 热影响区的V基固溶体相降低了Ti元素向熔凝区的迁移速率, 减慢了燃烧区Ti与O的优先反应; 燃烧区形成的TiO2, V2O5和Cr2O3混合氧化物和熔凝区O在Ti中大量固溶共同终止了O向合金基体的继续扩散, 从而使Ti-V-Cr阻燃钛合金表现出优异的阻燃功能性.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回