搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al-2N掺杂量对ZnO光电性能的影响

侯清玉 曲灵丰 赵春旺

Al-2N掺杂量对ZnO光电性能的影响

侯清玉, 曲灵丰, 赵春旺
PDF
导出引用
导出核心图
  • 与本文相近的Al-2N掺杂量的范围内, 对ZnO掺杂体系吸收光谱分布红移和蓝移两种实验结果均有文献报道, 但是, 迄今为止对吸收光谱分布尚未有合理的理论解释. 为了解决该问题, 本文采用基于密度泛函理论的广义梯度近似 平面波超软赝势方法, 用第一性原理构建了两种不同掺杂量的Zn0.98148Al0.01852O0.96296N0.03704和Zn0.96875Al0.03125O0.9375N0.0625超胞模型. 在几何结构优化的基础上, 对模型能带结构分布、态密度分布和吸收光谱分布进行了计算. 计算结果表明, 在本文限定的掺杂量范围内, Al-2N掺杂量越增加, 掺杂体系的体积越减小, 体系总能量越升高, 体系稳定性越下降, 形成能越升高, 掺杂越难; 所有掺杂体系均转化为简并p型化半导体, 掺杂体系最小光学带隙均变窄,吸收光谱均发生红移; 同时发现掺杂量越增加, 掺杂体系最小光学带隙变窄越减弱, 吸收光谱红移越减弱. 研究表明: 要想实现Al-2N共掺在ZnO中最小光学带隙变窄、掺杂体系发生红移现象, 除了限制掺杂量外, 尺度长短也应限制; 其次, Al-2N掺杂量越增加,掺杂体系空穴的有效质量、浓度、 迁移率、电导率越减小,掺杂体系导电性能越减弱. 计算结果与实验结果的变化趋势相符合. 研究表明, Al-2N共掺在ZnO中获得的新型半导体材料可以用作低温端的温差发电功能材料.
      通信作者: 侯清玉, by050119@126.com
    • 基金项目: 国家自然科学基金(批准号: 61366008, 11272142)、教育部春晖计划内蒙古自治区高等学校科学研究项目(批准号: NJZZ13099)资助的课题.
    [1]

    Bai L N, Sun H M, Lian J S, Jiang Q 2012 Chin. Phys. Lett. 29 117101

    [2]

    Li Z X, Rong Z 2015 Chin. Phys. B 24 107703

    [3]

    Kalyanaraman S, Thangavel R, Vettumperumal R 2013 J. Phys. Chem. Solid 74 504

    [4]

    Shet S, Ahn K S, Deutsch T, Wang H, Ravindra N, Yan Y, Turner J, Jassim M A 2010 J. Mater. Res. 25 69

    [5]

    Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloy. Compd. 580 538

    [6]

    Zhuge F, Zhu L P, Ye Z Z, Lu J G, Zhao B H, Huang J Y, Wang L, Zhang Z H, Ji Z G 2005 Thin Solid Films 476 272

    [7]

    Bhuvana K P, Elanchezhiyan J, Gopalakrishnan N, Balasubramanian T 2008 Appl. Surf. Sci. 255 2026

    [8]

    Lahmer M A, Guergouri K 2015 Mat. Sci. Semicon. Proc. 39 148

    [9]

    Li H L, Lv Y B, Li J Z, Yu K 2014 Mat. Sci. Semicon. Proc. 27 599

    [10]

    Yang P, ZhaoY F, Yang H Y 2015 Ceram. Int. 41 2446

    [11]

    Li P, Deng S H, Li Y B, Huang J, Liu G H, Zhang L 2011 Physica B 406 3125

    [12]

    Gao X Q, Guo Z Y, Zhang Y F, Cao D X 2010 J. Lumin. 31 509 (in Chinese) [高小奇, 郭志友, 张宇飞, 曹东兴 2010 发光学报 31 509]

    [13]

    You Q H, Hua C, Hu Z G, Liang P P, Prucnal S, Zhou S Q, Sun J, Xu N, Wu J D 2015 J. Alloy. Compd. 644 528

    [14]

    Lu H C, Lu J L, Lai C Y, Wu G M 2009 Physica B 404 4846

    [15]

    Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973

    [16]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [17]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [18]

    Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J 2008 Acta Phys. Sin. 57 6520 (in Chinese) [段满益, 徐明, 周海平, 陈青云, 胡志刚, 董成军 2008 物理学报 57 6520]

    [19]

    Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166

    [20]

    Benramache S, Belahssen O, Arif A, Guettaf A 2014 Optik 125 1303

    [21]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [22]

    Pires R G, Dickstein R M, Titcomb S L 1990 Cryogenics 30 106

  • [1]

    Bai L N, Sun H M, Lian J S, Jiang Q 2012 Chin. Phys. Lett. 29 117101

    [2]

    Li Z X, Rong Z 2015 Chin. Phys. B 24 107703

    [3]

    Kalyanaraman S, Thangavel R, Vettumperumal R 2013 J. Phys. Chem. Solid 74 504

    [4]

    Shet S, Ahn K S, Deutsch T, Wang H, Ravindra N, Yan Y, Turner J, Jassim M A 2010 J. Mater. Res. 25 69

    [5]

    Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloy. Compd. 580 538

    [6]

    Zhuge F, Zhu L P, Ye Z Z, Lu J G, Zhao B H, Huang J Y, Wang L, Zhang Z H, Ji Z G 2005 Thin Solid Films 476 272

    [7]

    Bhuvana K P, Elanchezhiyan J, Gopalakrishnan N, Balasubramanian T 2008 Appl. Surf. Sci. 255 2026

    [8]

    Lahmer M A, Guergouri K 2015 Mat. Sci. Semicon. Proc. 39 148

    [9]

    Li H L, Lv Y B, Li J Z, Yu K 2014 Mat. Sci. Semicon. Proc. 27 599

    [10]

    Yang P, ZhaoY F, Yang H Y 2015 Ceram. Int. 41 2446

    [11]

    Li P, Deng S H, Li Y B, Huang J, Liu G H, Zhang L 2011 Physica B 406 3125

    [12]

    Gao X Q, Guo Z Y, Zhang Y F, Cao D X 2010 J. Lumin. 31 509 (in Chinese) [高小奇, 郭志友, 张宇飞, 曹东兴 2010 发光学报 31 509]

    [13]

    You Q H, Hua C, Hu Z G, Liang P P, Prucnal S, Zhou S Q, Sun J, Xu N, Wu J D 2015 J. Alloy. Compd. 644 528

    [14]

    Lu H C, Lu J L, Lai C Y, Wu G M 2009 Physica B 404 4846

    [15]

    Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973

    [16]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [17]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [18]

    Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J 2008 Acta Phys. Sin. 57 6520 (in Chinese) [段满益, 徐明, 周海平, 陈青云, 胡志刚, 董成军 2008 物理学报 57 6520]

    [19]

    Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166

    [20]

    Benramache S, Belahssen O, Arif A, Guettaf A 2014 Optik 125 1303

    [21]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [22]

    Pires R G, Dickstein R M, Titcomb S L 1990 Cryogenics 30 106

  • [1] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [2] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [3] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计. 物理学报, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [4] 左富昌, 梅志武, 邓楼楼, 石永强, 贺盈波, 李连升, 周昊, 谢军, 张海力, 孙艳. 多层嵌套掠入射光学系统研制及在轨性能评价. 物理学报, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [5] 刘英光, 边永庆, 韩中合. 包含倾斜晶界的双晶ZnO的热输运行为. 物理学报, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [6] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [7] 沈永青, 张志强, 廖斌, 吴先映, 张旭, 华青松, 鲍曼雨. 高功率脉冲磁控溅射技术制备掺氮类金刚石薄膜的磨蚀性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200021
    [8] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [9] 黄永峰, 曹怀信, 王文华. 共轭线性对称性及其对\begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-对称量子理论的应用. 物理学报, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [10] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [11] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [12] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [13] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
  • 引用本文:
    Citation:
计量
  • 文章访问数:  419
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-16
  • 修回日期:  2015-12-17
  • 刊出日期:  2016-03-05

Al-2N掺杂量对ZnO光电性能的影响

  • 1. 内蒙古工业大学理学院物理系, 呼和浩特 010051;
  • 2. 上海海事大学文理学院, 上海 201306
  • 通信作者: 侯清玉, by050119@126.com
    基金项目: 

    国家自然科学基金(批准号: 61366008, 11272142)、教育部春晖计划内蒙古自治区高等学校科学研究项目(批准号: NJZZ13099)资助的课题.

摘要: 与本文相近的Al-2N掺杂量的范围内, 对ZnO掺杂体系吸收光谱分布红移和蓝移两种实验结果均有文献报道, 但是, 迄今为止对吸收光谱分布尚未有合理的理论解释. 为了解决该问题, 本文采用基于密度泛函理论的广义梯度近似 平面波超软赝势方法, 用第一性原理构建了两种不同掺杂量的Zn0.98148Al0.01852O0.96296N0.03704和Zn0.96875Al0.03125O0.9375N0.0625超胞模型. 在几何结构优化的基础上, 对模型能带结构分布、态密度分布和吸收光谱分布进行了计算. 计算结果表明, 在本文限定的掺杂量范围内, Al-2N掺杂量越增加, 掺杂体系的体积越减小, 体系总能量越升高, 体系稳定性越下降, 形成能越升高, 掺杂越难; 所有掺杂体系均转化为简并p型化半导体, 掺杂体系最小光学带隙均变窄,吸收光谱均发生红移; 同时发现掺杂量越增加, 掺杂体系最小光学带隙变窄越减弱, 吸收光谱红移越减弱. 研究表明: 要想实现Al-2N共掺在ZnO中最小光学带隙变窄、掺杂体系发生红移现象, 除了限制掺杂量外, 尺度长短也应限制; 其次, Al-2N掺杂量越增加,掺杂体系空穴的有效质量、浓度、 迁移率、电导率越减小,掺杂体系导电性能越减弱. 计算结果与实验结果的变化趋势相符合. 研究表明, Al-2N共掺在ZnO中获得的新型半导体材料可以用作低温端的温差发电功能材料.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回