搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米静态随机存储器低能质子单粒子翻转敏感性研究

罗尹虹 张凤祁 王燕萍 王圆明 郭晓强 郭红霞

引用本文:
Citation:

纳米静态随机存储器低能质子单粒子翻转敏感性研究

罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞

Single event upsets sensitivity of low energy proton in nanometer static random access memory

Luo Yin-Hong, Zhang Feng-Qi, Wang Yan-Ping, Wang Yuan-Ming, Guo Xiao-Qiang, Guo Hong-Xia
PDF
导出引用
  • 针对65, 90, 250 nm三种不同特征尺寸的静态随机存储器基于国内和国外质子加速器试验平台, 获取了从低能到高能完整的质子单粒子翻转截面曲线. 试验结果表明, 对于纳米器件1 MeV以下低能质子所引起的单粒子翻转截面比高能质子单粒子翻转饱和截面最高可达3个数量级. 采用基于试验数据和器件信息相结合的方法, 构建了较为精确的复合灵敏体积几何结构模型, 在此基础上采用蒙特卡罗方法揭示了低能质子穿过多层金属布线层, 由于能量岐离使展宽能谱处于布拉格峰值的附近, 通过直接电离方式将能量集中沉积在灵敏体积内, 是导致单粒子翻转截面峰值的根本原因. 并针对某一轨道环境预估了低能质子对空间质子单粒子翻转率的贡献.
    Low-energy protons are able to generate enough energy through direct ionization to cause a high single event upset cross section as the feature size of semiconductor devices shrinks. It poses a large challenge on the present proton single event modeling test technique and the space upset rate prediction method. Experimental study of proton single event effect in three different feature sizes of static random access memory (SRAM) (i.e. 65 nm, 90 nm, and 250 nm) is carried out based on domestic low-energy proton accelerators and also the foreign middle-high proton accelerators. Complete cross section curves of proton single event upset from low energy to high energy are acquired. Test results show that single event upset cross section below 1 MeV proton is up to three orders of magnitude higher than the saturation cross section of high-energy proton in nanometer SRAM. However, single event upset is not observed for protons below 3 MeV in 250 nm SRAM, and no single event multiple-cell upsets occur for protons below 1 MeV in 90 nm and 65 nm SRAM. The accurate geometrical structure model of composite sensitive volume is constructed through the combination of test data with device information, and calibrated further by single event test data of low-LET heavy ion and high-energy proton. Simulation results based on the model and Monte-Carlo calculation can reveal the root cause of low-proton single event upset cross section peak. Proton single event upsets are only caused through direct ionization of protons below 1 MeV. When low-energy protons pass through the multiple metallization and passivation layers of the device, the energy spectrum is broadened near the Bragg peak of the proton direct ionization, and the energy is deposited concentratedly into the sensitive volume through direct ionization. When the proton energy is too high or too low, the energy can not be deposited effectively into the sensitive volume through direct ionization. The energy spectrum straggling of low-energy protons due to the use of degrader has a large influence on the height and width of the single event upset cross section peak. Moreover, the contribution of low protons to the space proton single event upset rate is predicted for GEO orbit environment in the worst day environment. It shows that the direct ionization from low energy dominates the proton single event upset rate in the space in 65 nm SRAM. With the development of device technology, the critical charge of single event upset will be further reduced; and to the single event upset from low proton direct ionization more attention must be paid in the study and evaluation of single event effect.
      通信作者: 罗尹虹, luoyinhong@nint.ac.cn
    • 基金项目: 国家科技重大专项(批准号: 2014ZX01022-301)、国防科技预研项目(批准号: 51308040407)和国家重点基础研究发展计划(批准号: 613224)资助的课题.
      Corresponding author: Luo Yin-Hong, luoyinhong@nint.ac.cn
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2014ZX01022-301), the Chinese Defence Advance Research Program of Science and Technology (Grant No. 51308040407), and the National Basic Research Program of China (Grant No. 613224).
    [1]

    Space Component Coordination Group 1995 ESA/SCC Basic Specification No.25100

    [2]

    Buchner S, Marshall P, Kniffin S, Label K 2002 Proton Test Guideline Development (Washington: NASA/Goddard Space Flight Center) p24

    [3]

    Rodbell K P, Heidel D F, Tang H K, Gordon M S, Oldiges P, Murray C E 2008 IEEE Trans. Nucl. Sci. 54 2474

    [4]

    Sierawski B D, Pellish J A, Reed R A, Schrimpf R D, Warren K M, Weller R A, Mendenhall M H, Black J D, Tipton A D, Xapsos M A, Baumann R C, Deng X, Campola M J, Friendlich M R, Kim H S, Phan A M, Seidleck C M 2009 IEEE Trans. Nucl. Sci. 56 3085

    [5]

    Heidel D F, Marshall P W, LaBel K A, Schwank J R, Rodbell K P, Hakey M C, Berg M D, Dodd P E, Friendlich M R, Phan A D, Seidleck C M, Shaneyfelt M R, Xapsos M A 2008 IEEE Trans. Nucl. Sci. 55 3394

    [6]

    Cannon E H, Cabanas-Holmen M, Wert J, Amort T, Brees R, Koehn J, Meaker B, Normand E 2010 IEEE Trans. Nucl. Sci. 57 3493

    [7]

    Seifert N, Gill B, Pellish J A, Marshall P W, LaBel K A 2011 IEEE Trans. Nucl. Sci. 58 2711

    [8]

    Weulersse C, Miller F, Alexandrescu D, Schaefer E, Gaillard R 2011 The Conference on Radiation Effects on Components and Systems Sevilla Spain, September 19-23 2011 p291

    [9]

    Heidel D F, Marshall P W, Pellish J A, Rodbell K P, LaBel K A, Schwank J R, Rauch S E, Hakey M C, Berg M D, Castaneda C M, Dodd P E, Friendlich M R, Phan A D, Seidleck C M, Shaneyfelt M R, Xapsos M A 2009 IEEE Trans. Nucl. Sci. 56 3499

    [10]

    Pellish J A, Marshall P W, Rodbell Kenneth P, Gordon Michael S, LaBel K A, Schwank J R, Dodds N A, Castaneda C M, Berg M D, Kim H S, Phan A M, Seidleck C M 2014 IEEE Trans. Nucl. Sci. 61 2896

    [11]

    Schwank J R, Shaneyfelt M R, Ferlet-Cavrois V, Dodd P E, Blackmore E W, Pellish J A, Rodbell K P, Heidel D F, Marshall P W, LaBel K A, Gouker P M, Tam N, Wong R, Wen S J, Reed R A, Dalton S M, Swanson S E 2012 IEEE Trans. Nucl. Sci. 59 1197

    [12]

    Dodds N A, Schwank J R, Shaneyfelt M R, Dodd P E, Doyle B L, Trinczek M, Blackmore E W, Rodbell K P, Gordon M S, Reed R A, Pellish J A, LaBel K A, Marshall P W, Swanson S E, Vizkelethy G, van Deusen S, Sexton F W, Martinez M J 2014 IEEE Trans. Nucl. Sci. 61 2904

    [13]

    He A L, Guo G, Chen L, Shen D J, Ren Y, Liu J C, Zhang Z C, Cai L, Shi S T, Wang H, Fan H, Gao L J, Kong F Q 2014 Atomic Energy Science and Technology 48 2364 (in Chinese) [何安林, 郭刚, 陈力, 沈东军, 任义, 刘建成, 张志超, 蔡莉, 史淑廷, 王惠, 范辉, 高丽娟, 孔福全 2014 原子能科学技术 48 2364]

    [14]

    Geng C, Xi K, Liu T Q, Liu J 2014 Sci. China. Phys. Mech. Astron.) 57 1902

  • [1]

    Space Component Coordination Group 1995 ESA/SCC Basic Specification No.25100

    [2]

    Buchner S, Marshall P, Kniffin S, Label K 2002 Proton Test Guideline Development (Washington: NASA/Goddard Space Flight Center) p24

    [3]

    Rodbell K P, Heidel D F, Tang H K, Gordon M S, Oldiges P, Murray C E 2008 IEEE Trans. Nucl. Sci. 54 2474

    [4]

    Sierawski B D, Pellish J A, Reed R A, Schrimpf R D, Warren K M, Weller R A, Mendenhall M H, Black J D, Tipton A D, Xapsos M A, Baumann R C, Deng X, Campola M J, Friendlich M R, Kim H S, Phan A M, Seidleck C M 2009 IEEE Trans. Nucl. Sci. 56 3085

    [5]

    Heidel D F, Marshall P W, LaBel K A, Schwank J R, Rodbell K P, Hakey M C, Berg M D, Dodd P E, Friendlich M R, Phan A D, Seidleck C M, Shaneyfelt M R, Xapsos M A 2008 IEEE Trans. Nucl. Sci. 55 3394

    [6]

    Cannon E H, Cabanas-Holmen M, Wert J, Amort T, Brees R, Koehn J, Meaker B, Normand E 2010 IEEE Trans. Nucl. Sci. 57 3493

    [7]

    Seifert N, Gill B, Pellish J A, Marshall P W, LaBel K A 2011 IEEE Trans. Nucl. Sci. 58 2711

    [8]

    Weulersse C, Miller F, Alexandrescu D, Schaefer E, Gaillard R 2011 The Conference on Radiation Effects on Components and Systems Sevilla Spain, September 19-23 2011 p291

    [9]

    Heidel D F, Marshall P W, Pellish J A, Rodbell K P, LaBel K A, Schwank J R, Rauch S E, Hakey M C, Berg M D, Castaneda C M, Dodd P E, Friendlich M R, Phan A D, Seidleck C M, Shaneyfelt M R, Xapsos M A 2009 IEEE Trans. Nucl. Sci. 56 3499

    [10]

    Pellish J A, Marshall P W, Rodbell Kenneth P, Gordon Michael S, LaBel K A, Schwank J R, Dodds N A, Castaneda C M, Berg M D, Kim H S, Phan A M, Seidleck C M 2014 IEEE Trans. Nucl. Sci. 61 2896

    [11]

    Schwank J R, Shaneyfelt M R, Ferlet-Cavrois V, Dodd P E, Blackmore E W, Pellish J A, Rodbell K P, Heidel D F, Marshall P W, LaBel K A, Gouker P M, Tam N, Wong R, Wen S J, Reed R A, Dalton S M, Swanson S E 2012 IEEE Trans. Nucl. Sci. 59 1197

    [12]

    Dodds N A, Schwank J R, Shaneyfelt M R, Dodd P E, Doyle B L, Trinczek M, Blackmore E W, Rodbell K P, Gordon M S, Reed R A, Pellish J A, LaBel K A, Marshall P W, Swanson S E, Vizkelethy G, van Deusen S, Sexton F W, Martinez M J 2014 IEEE Trans. Nucl. Sci. 61 2904

    [13]

    He A L, Guo G, Chen L, Shen D J, Ren Y, Liu J C, Zhang Z C, Cai L, Shi S T, Wang H, Fan H, Gao L J, Kong F Q 2014 Atomic Energy Science and Technology 48 2364 (in Chinese) [何安林, 郭刚, 陈力, 沈东军, 任义, 刘建成, 张志超, 蔡莉, 史淑廷, 王惠, 范辉, 高丽娟, 孔福全 2014 原子能科学技术 48 2364]

    [14]

    Geng C, Xi K, Liu T Q, Liu J 2014 Sci. China. Phys. Mech. Astron.) 57 1902

  • [1] 张战刚, 杨少华, 林倩, 雷志锋, 彭超, 何玉娟. 基于青藏高原的14 nm FinFET和28 nm平面CMOS工艺SRAM单粒子效应实时测量试验. 物理学报, 2023, 72(14): 146101. doi: 10.7498/aps.72.20230161
    [2] 刘晔, 郭红霞, 琚安安, 张凤祁, 潘霄宇, 张鸿, 顾朝桥, 柳奕天, 冯亚辉. 质子辐照作用下浮栅单元的数据翻转及错误退火. 物理学报, 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [3] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽. HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟. 物理学报, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [4] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究. 物理学报, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [5] 张战刚, 叶兵, 姬庆刚, 郭金龙, 习凯, 雷志锋, 黄云, 彭超, 何玉娟, 刘杰, 杜广华. 纳米级静态随机存取存储器的α粒子软错误机理研究. 物理学报, 2020, (): 006100. doi: 10.7498/aps.69.20191796
    [6] 张战刚, 叶兵, 姬庆刚, 郭金龙, 习凯, 雷志锋, 黄云, 彭超, 何玉娟, 刘杰, 杜广华. 纳米级静态随机存取存储器的α粒子软错误机理研究. 物理学报, 2020, 69(13): 136103. doi: 10.7498/aps.69.20201796
    [7] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [8] 罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas. 基于重离子试验数据预测纳米加固静态随机存储器质子单粒子效应敏感性. 物理学报, 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [9] 张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞. 空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究. 物理学报, 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [10] 罗尹虹, 郭晓强, 陈伟, 郭刚, 范辉. 欧空局监测器单粒子翻转能量和角度相关性. 物理学报, 2016, 65(20): 206103. doi: 10.7498/aps.65.206103
    [11] 赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞. 质子与金属布线层核反应对微纳级静态随机存储器单粒子效应的影响分析. 物理学报, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [12] 罗尹虹, 张凤祁, 郭红霞, 郭晓强, 赵雯, 丁李利, 王园明. 纳米静态随机存储器质子单粒子多位翻转角度相关性研究. 物理学报, 2015, 64(21): 216103. doi: 10.7498/aps.64.216103
    [13] 陈睿, 余永涛, 上官士鹏, 封国强, 韩建伟. 90 nm互补金属氧化物半导体静态随机存储器局部单粒子闩锁传播效应诱发多位翻转的机理. 物理学报, 2014, 63(12): 128501. doi: 10.7498/aps.63.128501
    [14] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究. 物理学报, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [15] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法. 物理学报, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [16] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究. 物理学报, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [17] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟. 物理学报, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [18] 唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊 胜, 黄小龙, 王传珊. 低能质子在半导体材料Si 和GaAs中的非电离能损研究. 物理学报, 2008, 57(2): 1266-1270. doi: 10.7498/aps.57.1266
    [19] 李 华. 静态随机存储器单粒子翻转的Monte Carlo模拟. 物理学报, 2006, 55(7): 3540-3545. doi: 10.7498/aps.55.3540
    [20] 张庆祥, 侯明东, 刘 杰, 王志光, 金运范, 朱智勇, 孙友梅. 静态随机存储器单粒子效应的角度影响研究. 物理学报, 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
计量
  • 文章访问数:  5245
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-17
  • 修回日期:  2015-12-22
  • 刊出日期:  2016-03-05

/

返回文章
返回