搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究

白静 王晓书 俎启睿 赵骧 左良

Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究

白静, 王晓书, 俎启睿, 赵骧, 左良
PDF
导出引用
导出核心图
  • Ni-Mn-In是一种新型的磁控形状记忆合金, 它通过磁场诱导逆马氏体相变实现形状记忆效应. 实验中常围绕化学计量比Ni2MnIn合金进行成分调整, 以获得适宜的马氏体相变温度与居里温度, 在这个过程中必然会产生多种点缺陷. 本文使用量子力学计算软件包VASP, 在密度泛函理论的框架下通过第一原理计算, 系统地研究了非化学计量比Ni-X-In(X=Mn, Fe 和Co)合金的缺陷形成能和磁性能. 反位缺陷中, In和Ni在X亚晶格的反位缺陷(InX和NiX)的形成能最低, Ni和X反位于Y的亚晶格(NiY和XY)得到较高的形成能. 因此, In原子可以稳定立方母相的结构, 而X原子对母相结构稳定性的影响则相反; 空位缺陷中最高的形成能出现在In空位缺陷, 再次肯定了In原子对稳定母相结构的作用. 此外, 详细研究了点缺陷周围原子的磁性能以及电荷分布. 本文的计算结果在指导实验中的成分设计和开发新型磁控形状记忆合金方面具有重要意义.
      通信作者: 白静, baij@neuq.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51431005, 51301036)、国家高技术研究发展计划(批准号: 2015AA034101)、 中央高校基本科研业务费专项资金(批准号: N130523001)和河北省自然科学基金(批准号: E2013501089)资助的课题.
    [1]

    Ullakko K, Huang J K, Kanter C, Kokorin V V, O'Handley R C 1996 Appl. Phys. Lett. 69 1966

    [2]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957

    [3]

    Zhang Y Z, Cao J M, Tan C L, Cao Y J, Cai W 2014 Chin. Phys. B 23 037504

    [4]

    Ma S C, Xuan H C, Zhang C L, Wang L Y, Cao Q Q, Wang D H, Du Y W 2010 Chin. Phys. B 19 117503

    [5]

    Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 物理学报 57 3780]

    [6]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507

    [7]

    Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H 2006 Appl. Phys. Lett. 89 162503

    [8]

    Pathak A K, Dubenko I, Pueblo C, Stadler S, Ali N 2010 Appl. Phys. Lett. 96 172503

    [9]

    Umetsu R Y, Ito W, Ito K, Koyama K, Fujita A, Oikawa K, Kanomata T, Kainuma R, Ishida K 2009 Scripta Mater. 60 25

    [10]

    Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl. Phys. Lett. 89 182507

    [11]

    Li B, Ren W J, Zhang Q, L X K, Liu X G, Meng H, Li J, Li D, Zhang Z D 2009 Appl. Phys. Lett. 95 172506

    [12]

    Dubenko I, Pathak A K, Stadler S, Ali N, Kovarskii Y, Prudnikov V N, Perov N S, Granovsky A B 2009 Phys. Rev. B 80 092408

    [13]

    Krenke T, Acet M, Wassermann E F, Moya X, Maosa L, Planes A 2006 Phys. Rev. B 73 174413

    [14]

    Cai W, Feng Y, Sui J H, Gao Z Y, Dong G F 2008 Scripta Mater. 58 830

    [15]

    Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407

    [16]

    Zayak A T, Entel P, Rabe K M, Adeagbo W A, Acet M 2005 Phys. Rev. B 72 054113

    [17]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903

    [18]

    Entel P, Gruner M E, Adeagbo W A, Zayak A T 2008 Mat. Sci. Eng. A 481-482 258

    [19]

    Bai J, Xu N, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2012 J. Appl. Phys. 112 114901

    [20]

    Hafner J 2000 Acta Mater. 48 71

    [21]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [22]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [24]

    Kresse G, Hafner J 1996 J. Phys.: Condens. Matter 6 8245

    [25]

    Perdew J P, Wang Y 1991 Phys. Rev. B 45 13244

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [27]

    Raulot J M, Domain C 2005 Phys. Rev. B 71 035203

    [28]

    Bai J, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2010 J. Appl. Phys. 108 064904

  • [1]

    Ullakko K, Huang J K, Kanter C, Kokorin V V, O'Handley R C 1996 Appl. Phys. Lett. 69 1966

    [2]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957

    [3]

    Zhang Y Z, Cao J M, Tan C L, Cao Y J, Cai W 2014 Chin. Phys. B 23 037504

    [4]

    Ma S C, Xuan H C, Zhang C L, Wang L Y, Cao Q Q, Wang D H, Du Y W 2010 Chin. Phys. B 19 117503

    [5]

    Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 物理学报 57 3780]

    [6]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507

    [7]

    Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H 2006 Appl. Phys. Lett. 89 162503

    [8]

    Pathak A K, Dubenko I, Pueblo C, Stadler S, Ali N 2010 Appl. Phys. Lett. 96 172503

    [9]

    Umetsu R Y, Ito W, Ito K, Koyama K, Fujita A, Oikawa K, Kanomata T, Kainuma R, Ishida K 2009 Scripta Mater. 60 25

    [10]

    Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl. Phys. Lett. 89 182507

    [11]

    Li B, Ren W J, Zhang Q, L X K, Liu X G, Meng H, Li J, Li D, Zhang Z D 2009 Appl. Phys. Lett. 95 172506

    [12]

    Dubenko I, Pathak A K, Stadler S, Ali N, Kovarskii Y, Prudnikov V N, Perov N S, Granovsky A B 2009 Phys. Rev. B 80 092408

    [13]

    Krenke T, Acet M, Wassermann E F, Moya X, Maosa L, Planes A 2006 Phys. Rev. B 73 174413

    [14]

    Cai W, Feng Y, Sui J H, Gao Z Y, Dong G F 2008 Scripta Mater. 58 830

    [15]

    Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407

    [16]

    Zayak A T, Entel P, Rabe K M, Adeagbo W A, Acet M 2005 Phys. Rev. B 72 054113

    [17]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903

    [18]

    Entel P, Gruner M E, Adeagbo W A, Zayak A T 2008 Mat. Sci. Eng. A 481-482 258

    [19]

    Bai J, Xu N, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2012 J. Appl. Phys. 112 114901

    [20]

    Hafner J 2000 Acta Mater. 48 71

    [21]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [22]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [24]

    Kresse G, Hafner J 1996 J. Phys.: Condens. Matter 6 8245

    [25]

    Perdew J P, Wang Y 1991 Phys. Rev. B 45 13244

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [27]

    Raulot J M, Domain C 2005 Phys. Rev. B 71 035203

    [28]

    Bai J, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2010 J. Appl. Phys. 108 064904

  • [1] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [2] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [3] Algethami ObaidallahA(伊比), 李歌天, 柳祝红, 马星桥. Heusler合金Mn50–xCrxNi42Sn8的相变、磁性与交换偏置效应. 物理学报, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [4] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [5] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [6] 左富昌, 梅志武, 邓楼楼, 石永强, 贺盈波, 李连升, 周昊, 谢军, 张海力, 孙艳. 多层嵌套掠入射光学系统研制及在轨性能评价. 物理学报, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [7] 刘文姝, 高润亮, 冯红梅, 刘悦悦, 黄怡, 王建波, 刘青芳. 真空磁场热处理温度对不同厚度的Ni88Cu12薄膜畴结构及磁性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191942
    [8] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [9] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [10] 沈永青, 张志强, 廖斌, 吴先映, 张旭, 华青松, 鲍曼雨. 高功率脉冲磁控溅射技术制备掺氮类金刚石薄膜的磨蚀性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200021
    [11] 王琳, 魏来, 王正汹. 垂直磁重联平面的驱动流对磁岛链影响的模拟. 物理学报, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [12] 李翔艳, 王志辉, 李少康, 田亚莉, 李刚, 张鹏飞, 张天才. 蓝移阱中单个铯原子基态磁不敏感态的相干操控. 物理学报, 2020, (): . doi: 10.7498/aps.69.20192001
    [13] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [14] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [15] 黄永峰, 曹怀信, 王文华. 共轭线性对称性及其对\begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-对称量子理论的应用. 物理学报, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [16] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [17] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
  • 引用本文:
    Citation:
计量
  • 文章访问数:  545
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-19
  • 修回日期:  2016-02-16
  • 刊出日期:  2016-05-05

Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究

  • 1. 东北大学, 材料各向异性与织构教育部重点实验室, 沈阳 100819;
  • 2. 东北大学秦皇岛分校资源与材料学院, 秦皇岛 066004;
  • 3. 河北省电介质与电解质功能材料实验室, 秦皇岛 066004
  • 通信作者: 白静, baij@neuq.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 51431005, 51301036)、国家高技术研究发展计划(批准号: 2015AA034101)、 中央高校基本科研业务费专项资金(批准号: N130523001)和河北省自然科学基金(批准号: E2013501089)资助的课题.

摘要: Ni-Mn-In是一种新型的磁控形状记忆合金, 它通过磁场诱导逆马氏体相变实现形状记忆效应. 实验中常围绕化学计量比Ni2MnIn合金进行成分调整, 以获得适宜的马氏体相变温度与居里温度, 在这个过程中必然会产生多种点缺陷. 本文使用量子力学计算软件包VASP, 在密度泛函理论的框架下通过第一原理计算, 系统地研究了非化学计量比Ni-X-In(X=Mn, Fe 和Co)合金的缺陷形成能和磁性能. 反位缺陷中, In和Ni在X亚晶格的反位缺陷(InX和NiX)的形成能最低, Ni和X反位于Y的亚晶格(NiY和XY)得到较高的形成能. 因此, In原子可以稳定立方母相的结构, 而X原子对母相结构稳定性的影响则相反; 空位缺陷中最高的形成能出现在In空位缺陷, 再次肯定了In原子对稳定母相结构的作用. 此外, 详细研究了点缺陷周围原子的磁性能以及电荷分布. 本文的计算结果在指导实验中的成分设计和开发新型磁控形状记忆合金方面具有重要意义.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回