搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态锂在铜的微通道中的流动行为

唐琬婷 肖时芳 孙学贵 胡望宇 邓辉球

液态锂在铜的微通道中的流动行为

唐琬婷, 肖时芳, 孙学贵, 胡望宇, 邓辉球
PDF
导出引用
导出核心图
  • 本文采用分子动力学方法模拟了液态锂在铜的微通道内的流动行为. 通过构建铜(111), (100)和(110)晶面的微通道内壁, 研究了液态锂在流固界面上的微观结构以及在铜微通道中的流动速度分布情况, 并探讨了微通道尺寸对液态锂流动行为的影响. 研究结果表明铜微通道内的液态锂在靠近铜固体壁附近区域呈有序的层状结构分布, 并受铜内壁晶面微观结构的影响. 铜(111)和(100)面内壁附近的液态锂有序层分布结构更明显. 外驱力作用下的液态锂在微通道内的流动速度呈抛物线分布, 流固界面和流动方向对液态锂的流动速度都会产生影响. 液态锂在铜(111)面内壁上流动的速度最大, 且出现了速度滑移; 在铜(110)面内壁上流动速度最小. 通过对不同尺寸的微通道内液态锂流动行为的研究, 发现流动速度的大小随着微通道尺寸的增加而增大, 且最大速度与微通道尺寸呈二次函数关系, 与有关理论计算结果符合得很好.
      通信作者: 邓辉球, hqdeng@hnu.edu.cn
    • 基金项目: 国际热核聚变实验堆ITER计划专项(批准号:2013GB114001)和国家自然科学基金(批准号:51371080)资助的课题.
    [1]

    Tang G H, Zhang Y H, Emerson D R 2008 Phys. Rev. E 77 046701

    [2]

    Cracknell R F, Nicholson D, Quirke N 1995 Phys. Rev. Lett. 74 2463

    [3]

    Tao R, Quan X B, Xu J Z 2001 J. Eng. Thermophys. 22 575 (in Chinese) [陶然, 权晓波, 徐建中 2001 工程热物理学报 22 575]

    [4]

    Bitsanis I, Magda J J, Tirrell M, Davis H T 1987 J. Chem. Phys. 87 1733

    [5]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 物理学报 55 5305]

    [6]

    Travis K P, Todd B D, Evans D J 1997 Phys. Rev. E 55 4288

    [7]

    Akhmatskaya E, Todd B D, Daivis P J, Evans D J, Gubbins K E, Pozhar L A 1997 J. Chem. Phys. 106 4684

    [8]

    Pozhar L A, Gubbins K E 1993 J. Chem. Phys. 99 8970

    [9]

    Bitsanis I, Somers S A, Davis H T, Tirrell M 1990 J. Chem. Phys. 93 3427

    [10]

    Nagayama G, Cheng P 2004 Int. J. Heat Mass Transfer 47 501

    [11]

    Desai T G 2010 Chem. Phys. Lett. 501 93

    [12]

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706 (in Chinese) [张程宾, 许兆林, 陈永平 2014 物理学报 63 214706]

    [13]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311

    [14]

    Canles M, Padr J A, Gonzalez L E, Gir A 1993 J. Phys.: Condens. Matter 5 3095

    [15]

    Canales M, Gouzlez L E, Padr J A 1994 Phys. Rev. E 50 3656

    [16]

    Cui Z, Gao F, Cui Z, Qu J 2012 Model. Simul. Mater. Sci. 20 015014

    [17]

    Wang Z H, Ni M J 2012 Heat Mass Transfer 48 253

    [18]

    Allain J P, Coventry M D, Ruzic D N 2007 Phys. Rev. B 76 205434

    [19]

    Deng B Q, Allain J P, Luo Z M, Peng L L, Yan J C 2007 Nucl. Instrum. Meth. B 259 847

    [20]

    Li C Y, Allain J P, Deng B Q 2007 Chin. Phys. B 16 3312

    [21]

    Meng X C, Zuo G Z, Ren J, Sun Z, Xu W, Huang M, Li M H, Deng H Q, Hu J S, Hu W Y 2015 Acta Phys. Sin. 64 212801 (in Chinese) [孟献才, 左桂忠, 任君, 孙震, 徐伟, 黄明, 李美姮, 邓辉球, 胡建生, 胡望宇 2015 物理学报 64 212801]

    [22]

    Li R Q, Tong L L, Cao X W 2013 Nuclear Fusion and Plasma Physics 33 175 (in Chinese) [李若晴, 佟立丽, 曹学武 2013 核聚变与等离子体物理 33 175]

    [23]

    Topilski L N, Masson X, Porfiri M T, Pinna T, Sponton L L, Andersen J, Takase K, Kurihara R, Sardain P, Girard C 2001 Fusion Eng. Des. 54 627

    [24]

    Zhang B W, Hu W Y, Shu X L 2003 Theory of Embedded Atom Method and Its Application to Materials Science-Atomic Scale Materials Design Theory (Changsha: Hunan University Press) p245 (in Chinese) [张邦维, 胡望宇, 舒小林 2003 嵌入原子方法理论及其在材料科学中的应用-原子尺度材料设计理论 (长沙: 湖南大学出版社) 第245页]

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [26]

    Zhang J M, Huang Y H, Xu K W, Vincent J 2007 Chin. Phys. B 16 0210

    [27]

    Gan X L, Xiao S F, Deng H Q, Sun X G, Li X F, Hu W Y 2014 Fusion Eng. Des. 89 2894

    [28]

    Tang J, Yang J 2015 J. Nanopart. Res. 17 299

    [29]

    Nos S 1984 J. Chem. Phys. 81 511

    [30]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [31]

    Thompson P A, Robbins M O 1990 Phys. Rev. A 41 6830

    [32]

    Granick S 1991 Science 253 1374

    [33]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

    [34]

    Chen X, Sun X G, Deng H Q, Xiao S F, Hu W Y 2015 (submitted to Comput. Mater. Sci. for publication)

    [35]

    Travis K P, Gubbins K E 2000 J. Chem. Phys. 112 1984

    [36]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

  • [1]

    Tang G H, Zhang Y H, Emerson D R 2008 Phys. Rev. E 77 046701

    [2]

    Cracknell R F, Nicholson D, Quirke N 1995 Phys. Rev. Lett. 74 2463

    [3]

    Tao R, Quan X B, Xu J Z 2001 J. Eng. Thermophys. 22 575 (in Chinese) [陶然, 权晓波, 徐建中 2001 工程热物理学报 22 575]

    [4]

    Bitsanis I, Magda J J, Tirrell M, Davis H T 1987 J. Chem. Phys. 87 1733

    [5]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 物理学报 55 5305]

    [6]

    Travis K P, Todd B D, Evans D J 1997 Phys. Rev. E 55 4288

    [7]

    Akhmatskaya E, Todd B D, Daivis P J, Evans D J, Gubbins K E, Pozhar L A 1997 J. Chem. Phys. 106 4684

    [8]

    Pozhar L A, Gubbins K E 1993 J. Chem. Phys. 99 8970

    [9]

    Bitsanis I, Somers S A, Davis H T, Tirrell M 1990 J. Chem. Phys. 93 3427

    [10]

    Nagayama G, Cheng P 2004 Int. J. Heat Mass Transfer 47 501

    [11]

    Desai T G 2010 Chem. Phys. Lett. 501 93

    [12]

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706 (in Chinese) [张程宾, 许兆林, 陈永平 2014 物理学报 63 214706]

    [13]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311

    [14]

    Canles M, Padr J A, Gonzalez L E, Gir A 1993 J. Phys.: Condens. Matter 5 3095

    [15]

    Canales M, Gouzlez L E, Padr J A 1994 Phys. Rev. E 50 3656

    [16]

    Cui Z, Gao F, Cui Z, Qu J 2012 Model. Simul. Mater. Sci. 20 015014

    [17]

    Wang Z H, Ni M J 2012 Heat Mass Transfer 48 253

    [18]

    Allain J P, Coventry M D, Ruzic D N 2007 Phys. Rev. B 76 205434

    [19]

    Deng B Q, Allain J P, Luo Z M, Peng L L, Yan J C 2007 Nucl. Instrum. Meth. B 259 847

    [20]

    Li C Y, Allain J P, Deng B Q 2007 Chin. Phys. B 16 3312

    [21]

    Meng X C, Zuo G Z, Ren J, Sun Z, Xu W, Huang M, Li M H, Deng H Q, Hu J S, Hu W Y 2015 Acta Phys. Sin. 64 212801 (in Chinese) [孟献才, 左桂忠, 任君, 孙震, 徐伟, 黄明, 李美姮, 邓辉球, 胡建生, 胡望宇 2015 物理学报 64 212801]

    [22]

    Li R Q, Tong L L, Cao X W 2013 Nuclear Fusion and Plasma Physics 33 175 (in Chinese) [李若晴, 佟立丽, 曹学武 2013 核聚变与等离子体物理 33 175]

    [23]

    Topilski L N, Masson X, Porfiri M T, Pinna T, Sponton L L, Andersen J, Takase K, Kurihara R, Sardain P, Girard C 2001 Fusion Eng. Des. 54 627

    [24]

    Zhang B W, Hu W Y, Shu X L 2003 Theory of Embedded Atom Method and Its Application to Materials Science-Atomic Scale Materials Design Theory (Changsha: Hunan University Press) p245 (in Chinese) [张邦维, 胡望宇, 舒小林 2003 嵌入原子方法理论及其在材料科学中的应用-原子尺度材料设计理论 (长沙: 湖南大学出版社) 第245页]

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [26]

    Zhang J M, Huang Y H, Xu K W, Vincent J 2007 Chin. Phys. B 16 0210

    [27]

    Gan X L, Xiao S F, Deng H Q, Sun X G, Li X F, Hu W Y 2014 Fusion Eng. Des. 89 2894

    [28]

    Tang J, Yang J 2015 J. Nanopart. Res. 17 299

    [29]

    Nos S 1984 J. Chem. Phys. 81 511

    [30]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [31]

    Thompson P A, Robbins M O 1990 Phys. Rev. A 41 6830

    [32]

    Granick S 1991 Science 253 1374

    [33]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

    [34]

    Chen X, Sun X G, Deng H Q, Xiao S F, Hu W Y 2015 (submitted to Comput. Mater. Sci. for publication)

    [35]

    Travis K P, Gubbins K E 2000 J. Chem. Phys. 112 1984

    [36]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

  • [1] 张程宾, 许兆林, 陈永平. 粗糙纳通道内流体流动与传热的分子动力学模拟研究. 物理学报, 2014, 63(21): 214706. doi: 10.7498/aps.63.214706
    [2] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [3] 侯兆阳, 刘让苏, 李琛珊, 周群益, 郑采星. 冷速对液态金属Na凝固过程中微观结构影响的模拟研究. 物理学报, 2005, 54(12): 5723-5729. doi: 10.7498/aps.54.5723
    [4] 刘让苏, 田泽安, 侯兆阳, 王 鑫, 周群益, 易学华. 冷却速率对液态金属Cu凝固过程中微观结构演变影响的模拟研究. 物理学报, 2006, 55(10): 5386-5393. doi: 10.7498/aps.55.5386
    [5] 陈振华, 刘让苏, 王 鑫, 田泽安, 周群益, 侯兆阳. 熔体初始温度对液态金属Na凝固过程中微观结构影响的模拟研究. 物理学报, 2007, 56(1): 376-383. doi: 10.7498/aps.56.376
    [6] 周丽丽, 刘让苏, 侯兆阳, 田泽安, 林 艳, 刘全慧. 冷速对液态金属Pb凝固过程中微观团簇结构演变影响的模拟研究. 物理学报, 2008, 57(6): 3653-3660. doi: 10.7498/aps.57.3653
    [7] 梁永超, 刘让苏, 朱轩民, 周丽丽, 田泽安, 刘全慧. 液态Mg7Zn3合金快速凝固过程中微观结构演变机理的模拟研究. 物理学报, 2010, 59(11): 7930-7940. doi: 10.7498/aps.59.7930
    [8] 邓阳, 刘让苏, 周群益, 刘海蓉, 梁永超, 莫云飞, 张海涛, 田泽安, 彭平. 熔体初始温度对液态金属Ni凝固过程中微观结构演变影响的模拟研究. 物理学报, 2013, 62(16): 166101. doi: 10.7498/aps.62.166101
    [9] 孟献才, 左桂忠, 任君, 孙震, 徐伟, 黄明, 李美姮, 邓辉球, 胡建生, 胡望宇. HT-7装置液态锂限制器实验中锂的腐蚀与沉积特性的研究. 物理学报, 2015, 64(21): 212801. doi: 10.7498/aps.64.212801
    [10] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟. 物理学报, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [11] 王琛, 宋海洋, 安敏荣. 界面旋转角对双晶镁力学性质影响的分子动力学模拟. 物理学报, 2014, 63(4): 046201. doi: 10.7498/aps.63.046201
    [12] 韦昭召, 马骁, 柯常波, 张新平. Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191903
    [13] 刘丽霞, 侯兆阳, 刘让苏. 过冷液体钾形核初期微观动力学机理的模拟研究. 物理学报, 2012, 61(5): 056101. doi: 10.7498/aps.61.056101
    [14] 于涛, 谢红献, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究. 物理学报, 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [15] 郑小青, 杨洋, 孙得彦. 模型二元有序合金固液界面结构的分子动力学研究. 物理学报, 2013, 62(1): 017101. doi: 10.7498/aps.62.017101
    [16] 吴博强, 刘海蓉, 刘让苏, 莫云飞, 田泽安, 梁永超, 关绍康, 黄昌雄. 冷速对液态金属Mg凝固过程中微观结构演变的影响. 物理学报, 2017, 66(1): 016101. doi: 10.7498/aps.66.016101
    [17] 郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安. 冷速对液态合金Ca50Zn50快速凝固过程中微观结构演变的影响. 物理学报, 2012, 61(24): 246102. doi: 10.7498/aps.61.246102
    [18] 赵珍阳, 李涛, 李肖音, 李雄鹰, 李辉. 液态Ag薄膜在修饰的石墨烯表面的形态演变及其界面性质. 物理学报, 2017, 66(6): 069601. doi: 10.7498/aps.66.069601
    [19] 沈明仁, 刘锐, 厚美瑛, 杨明成, 陈科. 自扩散泳微观转动马达的介观模拟. 物理学报, 2016, 65(17): 170201. doi: 10.7498/aps.65.170201
    [20] 侯兆阳, 刘让苏, 田泽安, 刘丽霞. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究. 物理学报, 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
  • 引用本文:
    Citation:
计量
  • 文章访问数:  641
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-09
  • 修回日期:  2016-01-27
  • 刊出日期:  2016-05-20

液态锂在铜的微通道中的流动行为

  • 1. 湖南大学物理与微电子科学学院, 长沙 410082;
  • 2. 湖南大学材料与工程学院, 长沙 410082
  • 通信作者: 邓辉球, hqdeng@hnu.edu.cn
    基金项目: 

    国际热核聚变实验堆ITER计划专项(批准号:2013GB114001)和国家自然科学基金(批准号:51371080)资助的课题.

摘要: 本文采用分子动力学方法模拟了液态锂在铜的微通道内的流动行为. 通过构建铜(111), (100)和(110)晶面的微通道内壁, 研究了液态锂在流固界面上的微观结构以及在铜微通道中的流动速度分布情况, 并探讨了微通道尺寸对液态锂流动行为的影响. 研究结果表明铜微通道内的液态锂在靠近铜固体壁附近区域呈有序的层状结构分布, 并受铜内壁晶面微观结构的影响. 铜(111)和(100)面内壁附近的液态锂有序层分布结构更明显. 外驱力作用下的液态锂在微通道内的流动速度呈抛物线分布, 流固界面和流动方向对液态锂的流动速度都会产生影响. 液态锂在铜(111)面内壁上流动的速度最大, 且出现了速度滑移; 在铜(110)面内壁上流动速度最小. 通过对不同尺寸的微通道内液态锂流动行为的研究, 发现流动速度的大小随着微通道尺寸的增加而增大, 且最大速度与微通道尺寸呈二次函数关系, 与有关理论计算结果符合得很好.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回