搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性

姚仲瑜 孙丽 潘孟美 孙书娟

第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性

姚仲瑜, 孙丽, 潘孟美, 孙书娟
PDF
导出引用
导出核心图
  • 采用第一性原理的全势能线性缀加平面波方法, 对semi-Heusler合金CoCrTe和CoCrSb 的电子结构进行自旋极化计算. CoCrTe和CoCrSb处于平衡晶格常数时是半金属性铁磁体, 其半金属隙分别为0.28和0.22 eV, 晶胞总磁矩为3.00 B和2.00 B. CoCrTe和CoCrSb的晶胞总磁矩主要来自于Cr原子磁矩. Co, Te和Sb的原子磁矩较小, 它们的磁矩方向与Cr原子的磁矩方向相反. 使晶格常数在 13%的范围内变化(相对于平衡晶格常数), 并计算CoCrTe 和CoCrSb 的电子结构. 计算研究表明, CoCrTe和CoCrSb的晶格常数变化分别在-11.4%-9.0%和-11.2%-2.0%时仍具有半金属性, 并且它们晶胞总磁矩稳定于3.00 B 和2.00 B.
      通信作者: 姚仲瑜, yzy@hainnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11364014, 11364015)和海南省自然科学基金(批准号: 113005, 20165196)资助的课题.
    [1]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [2]

    Yanase A, Siratori K 1984 J. Phys. Soc. Jpn. 53 312

    [3]

    Schwarz K 1986 J. Phys. F: Met. Phys. 16 L211

    [4]

    Galanakis I, Mavropoulos P 2003 Phys. Rev. B 67 104417

    [5]

    Yao K L, Gao G Y, Liu Z L, Zhu L 2005 Solid State Commun. 133 301

    [6]

    Xie W H, Xu Y Q, Liu B G, Pettifor D G 2003 Phys. Rev. Lett. 91 037204

    [7]

    Yao Z, Zhang Y S, Yao K L 2012 Appl. Phys. Lett. 101 062402

    [8]

    Zhang M, Dai X, Hu H, Liu G, Cui Y, Liu Z, Chen J, Wang J, Wu G 2003 J. Phys. Condens. Matter 15 7891

    [9]

    Galanakis I, Mavropoulos P 2007 J. Phys.: Condens. Matter 19 315213

    [10]

    Picizzio S, Continenza A, Freeman A J 2002 Phys. Rev. B 66 094421

    [11]

    Droghetti A, Baadji N, Sanvito S 2009 Phys. Rev. B 80 235310

    [12]

    Gao G Y, Yao K L 2012 J. Appl. Phys. 111 113703

    [13]

    Soeya S, Hayakawa J, Takahashi H, Ito K, Yamamoto C, Kida A, Asano H, Matsui M 2002 Appl. Phys. Lett. 80 823

    [14]

    Watts S M, Wirth S, von Molnar S, Barry A, Coey J M D 2000 Phys. Rev. B 61 9621

    [15]

    Soulen Jr. R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D 1998 Science 282 85

    [16]

    Kato H, Okuda T, Okimoto Y, Tomioka Y, Takenoya Y, Ohkubo A, Kawasaki M, Tokuraa Y 2002 Appl. Phys. Lett. 81 328

    [17]

    Zhao J J, Qi X, Liu E K, Zhu W, Qian J F, Li G J, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 047108 (in Chinese) [赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒 2011 物理学报 60 047108]

    [18]

    Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H 2006 Appl. Phys. Lett. 88 192508

    [19]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchel-kanova A Y, Treger D M 2001 Science 294 1488

    [20]

    Webster P J, Ziebeck K R A 1988 Alloys and Compounds of d-Elements with Main Group Elements (Berlin: Springer) pp75-184

    [21]

    Ziebeck K R A, Neumann K U 2001 Magnetic Properties of Metals (Berlin: Springer) pp64-414

    [22]

    Chen J, Gao G Y, Yao K L, Song M H 2011 J. Alloys Compd. 509 10172

    [23]

    Zhang M, Dai X, Hu H, Liu G, Cui Y, Liu Z, Chen J, Wang J, Wu G 2003 J. Phys. Condens. Matter 15 7891

    [24]

    Zhang M, Liu Z H, Hu H N, Liu G D, Cui Y T, Wu G H, Bruck E, de Boer F R, Li Y X 2004 J. Appl. Phys. 95 7219

    [25]

    Kubler J 1984 Physica B, C 127 257

    [26]

    de Groot R A, van der Kraan A M, Buschow K H J 1986 J. Magn. Magn. Mater. 61 330

    [27]

    Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J 1990 Comput. Phys. Commun. 59 399

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [29]

    Otto M J, van Woerden R A M, van der Valk P J, Wijngaard J, van Bruggen C F, Haas C, Buschow K H J 1989 J. Phys. Condens. Matter 1 2341

    [30]

    Helmholdt R B, de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1984 J. Magn. Magn. Mater. 43 249

    [31]

    Galanakis I, Dederichs P H, Papanikolaou N 2002 Phys. Rev. B 66 134428

    [32]

    Block T, Carey M J, Gurney B A, Jepsen O 2004 Phys. Rev. B 70 205114

  • [1]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [2]

    Yanase A, Siratori K 1984 J. Phys. Soc. Jpn. 53 312

    [3]

    Schwarz K 1986 J. Phys. F: Met. Phys. 16 L211

    [4]

    Galanakis I, Mavropoulos P 2003 Phys. Rev. B 67 104417

    [5]

    Yao K L, Gao G Y, Liu Z L, Zhu L 2005 Solid State Commun. 133 301

    [6]

    Xie W H, Xu Y Q, Liu B G, Pettifor D G 2003 Phys. Rev. Lett. 91 037204

    [7]

    Yao Z, Zhang Y S, Yao K L 2012 Appl. Phys. Lett. 101 062402

    [8]

    Zhang M, Dai X, Hu H, Liu G, Cui Y, Liu Z, Chen J, Wang J, Wu G 2003 J. Phys. Condens. Matter 15 7891

    [9]

    Galanakis I, Mavropoulos P 2007 J. Phys.: Condens. Matter 19 315213

    [10]

    Picizzio S, Continenza A, Freeman A J 2002 Phys. Rev. B 66 094421

    [11]

    Droghetti A, Baadji N, Sanvito S 2009 Phys. Rev. B 80 235310

    [12]

    Gao G Y, Yao K L 2012 J. Appl. Phys. 111 113703

    [13]

    Soeya S, Hayakawa J, Takahashi H, Ito K, Yamamoto C, Kida A, Asano H, Matsui M 2002 Appl. Phys. Lett. 80 823

    [14]

    Watts S M, Wirth S, von Molnar S, Barry A, Coey J M D 2000 Phys. Rev. B 61 9621

    [15]

    Soulen Jr. R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D 1998 Science 282 85

    [16]

    Kato H, Okuda T, Okimoto Y, Tomioka Y, Takenoya Y, Ohkubo A, Kawasaki M, Tokuraa Y 2002 Appl. Phys. Lett. 81 328

    [17]

    Zhao J J, Qi X, Liu E K, Zhu W, Qian J F, Li G J, Wang W H, Wu G H 2011 Acta Phys. Sin. 60 047108 (in Chinese) [赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒 2011 物理学报 60 047108]

    [18]

    Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H 2006 Appl. Phys. Lett. 88 192508

    [19]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchel-kanova A Y, Treger D M 2001 Science 294 1488

    [20]

    Webster P J, Ziebeck K R A 1988 Alloys and Compounds of d-Elements with Main Group Elements (Berlin: Springer) pp75-184

    [21]

    Ziebeck K R A, Neumann K U 2001 Magnetic Properties of Metals (Berlin: Springer) pp64-414

    [22]

    Chen J, Gao G Y, Yao K L, Song M H 2011 J. Alloys Compd. 509 10172

    [23]

    Zhang M, Dai X, Hu H, Liu G, Cui Y, Liu Z, Chen J, Wang J, Wu G 2003 J. Phys. Condens. Matter 15 7891

    [24]

    Zhang M, Liu Z H, Hu H N, Liu G D, Cui Y T, Wu G H, Bruck E, de Boer F R, Li Y X 2004 J. Appl. Phys. 95 7219

    [25]

    Kubler J 1984 Physica B, C 127 257

    [26]

    de Groot R A, van der Kraan A M, Buschow K H J 1986 J. Magn. Magn. Mater. 61 330

    [27]

    Blaha P, Schwarz K, Madsen G K H, Kvasnicka D, Luitz J 1990 Comput. Phys. Commun. 59 399

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [29]

    Otto M J, van Woerden R A M, van der Valk P J, Wijngaard J, van Bruggen C F, Haas C, Buschow K H J 1989 J. Phys. Condens. Matter 1 2341

    [30]

    Helmholdt R B, de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1984 J. Magn. Magn. Mater. 43 249

    [31]

    Galanakis I, Dederichs P H, Papanikolaou N 2002 Phys. Rev. B 66 134428

    [32]

    Block T, Carey M J, Gurney B A, Jepsen O 2004 Phys. Rev. B 70 205114

  • [1] 姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军. 第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性. 物理学报, 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
    [2] 杨艳敏, 李佳, 马洪然, 杨广, 毛秀娟, 李聪聪. Co2-基Heusler合金Co2FeAl1–xSix(x = 0.25, x = 0.5, x = 0.75)的结构、电子结构及热电特性的第一性原理研究. 物理学报, 2019, 68(4): 046101. doi: 10.7498/aps.68.20181641
    [3] 许佳玲, 贾利云, 靳晓庆, 郝兴楠, 马丽, 侯登录. 系列CoMnZnZ四元Heusler化合物的结构和半金属铁磁性. 物理学报, 2019, 68(15): 157501. doi: 10.7498/aps.68.20190207
    [4] 丁俊, 文黎巍, 王玉梅, 裴慧霞. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [5] 赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒. Co50Fe25-xMnxSi25系列合金的结构、磁性和半金属性研究. 物理学报, 2011, 60(4): 047108. doi: 10.7498/aps.60.047108
    [6] 王新强, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀, 程志梅, 王风. 三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究. 物理学报, 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [7] 王少霞, 张丽丽. 过渡金属(Cr、Mn、Fe、Co)掺杂对TiO2磁性影响的第一性原理研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200644
    [8] 罗礼进, 仲崇贵, 方靖淮, 赵永林, 周朋霞, 江学范. Heusler合金Mn2 NiAl的电子结构和磁性对四方畸变的响应及其压力响应. 物理学报, 2011, 60(12): 127502. doi: 10.7498/aps.60.127502
    [9] 杜音, 王文洪, 张小明, 刘恩克, 吴光恒. 铁基Heusler合金Fe2Co1-xCrxSi的结构、磁性和输运性质的研究. 物理学报, 2012, 61(14): 147304. doi: 10.7498/aps.61.147304
    [10] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [11] 姚仲瑜, 傅军, 龚少华, 张月胜, 姚凯伦. 晶格各向同性应变对闪锌矿结构CrS和CrSe的半金属性和磁性的影响. 物理学报, 2011, 60(12): 127103. doi: 10.7498/aps.60.127103
    [12] 段满益, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军, 徐 明. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [13] 江学范, 罗礼进, 仲崇贵, 方靖淮, 蒋青. Heusler合金Ni2MnSi的电子结构、磁性、压力响应及四方变形的第一性原理研究. 物理学报, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [14] 颜送灵, 唐黎明, 赵宇清. 不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究. 物理学报, 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [15] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [16] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [17] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [18] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [19] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算. 物理学报, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [20] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
  • 引用本文:
    Citation:
计量
  • 文章访问数:  707
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-19
  • 修回日期:  2016-04-05
  • 刊出日期:  2016-06-05

第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性

  • 1. 海南师范大学物理与电子工程学院, 海口 571158
  • 通信作者: 姚仲瑜, yzy@hainnu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 11364014, 11364015)和海南省自然科学基金(批准号: 113005, 20165196)资助的课题.

摘要: 采用第一性原理的全势能线性缀加平面波方法, 对semi-Heusler合金CoCrTe和CoCrSb 的电子结构进行自旋极化计算. CoCrTe和CoCrSb处于平衡晶格常数时是半金属性铁磁体, 其半金属隙分别为0.28和0.22 eV, 晶胞总磁矩为3.00 B和2.00 B. CoCrTe和CoCrSb的晶胞总磁矩主要来自于Cr原子磁矩. Co, Te和Sb的原子磁矩较小, 它们的磁矩方向与Cr原子的磁矩方向相反. 使晶格常数在 13%的范围内变化(相对于平衡晶格常数), 并计算CoCrTe 和CoCrSb 的电子结构. 计算研究表明, CoCrTe和CoCrSb的晶格常数变化分别在-11.4%-9.0%和-11.2%-2.0%时仍具有半金属性, 并且它们晶胞总磁矩稳定于3.00 B 和2.00 B.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回