搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

囚禁有限unitary费米气体的热力学性质

袁都奇

囚禁有限unitary费米气体的热力学性质

袁都奇
PDF
导出引用
导出核心图
  • 应用分数不相容统计,研究了三维简谐势阱中有限unitary费米气体在绝对零度和有限温度下的热力学性质,并与势阱中满足热力学极限条件的unitary费米气体进行了比较. 结果表明:绝对零度时有限系统的费米能、粒子平均能量随粒子数的增加而增大,并以满足热力学极限系统的对应物理量为上限,有限系统的费米能、粒子平均能量随势阱边界变化存在极大值. 有限温度条件下给定粒子数时,有限系统的粒子平均能量、粒子平均熵、粒子平均热容量分别存在对应的特征温度,当温度等于物理量对应的特征温度时,有限系统与满足热力学极限系统的同一物理量相等,低于(或高于)物理量对应的特征温度时,有限系统的物理量将大于(或小于)满足热力学极限系统的同一量. 给定温度条件下,有限系统粒子平均能量、粒子平均熵、粒子平均热容量分别存在对应的特征粒子数,当粒子数等于物理量对应的特征粒子数时,有限系统与满足热力学极限系统的同一物理量相等,少于(或多于)物理量对应的特征粒子数时,有限系统的物理量将小于(或大于)满足热力学极限系统的同一量.
      通信作者: 袁都奇, yuanduqi@163.com
    • 基金项目: 陕西省自然科学基金(批准号:2012JM1006)资助的课题.
    [1]

    Regal C A, Greiner M, Jin D S 2004 Phys. Rev. Lett. 92 040403

    [2]

    Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruell L, Kokkelmans S J J M F, Salomon C 2004 Phys. Rev. Lett. 93 050401

    [3]

    Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag H J, Grimm R 2004 Phys. Rev. Lett. 92 120401

    [4]

    Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H, Ketterle W 2005 Nature 435 1047

    [5]

    Romans M W J, Stoof H T C 2005 Phys. Rev. Lett. 95 260407

    [6]

    Ho T L 2004 Phys. Rev. Lett. 92 090402

    [7]

    Hu H, Drummond P D, Liu X J 2007 Nat. Phys. 3 469

    [8]

    Luo L, Clancy B, Joseph J, Kinast J, Thomas J E 2007 Phys. Rev. Lett. 98 080402

    [9]

    Kinast J, Turlapov A, Thomas J E, Chen Q J, Stajic J, Levin K 2005 Science 307 1296

    [10]

    Luo L, Thomas J E 2009 J. Low Temp. Phys. 154 1

    [11]

    Joseph J, Clancy B, Luo L, Kinast J, Turlapov A, Thomas J E 2007 Phys. Rev. Lett. 98 170401

    [12]

    Papenbrock T 2005 Phys. Rev. A 72 041603

    [13]

    Hu H, Liu X J, Drummond P D 2010 New J. Phys. 12 063038

    [14]

    Bulgac A, Drut J E, Magierski P 2006 Phys. Rev. Lett. 96 090404

    [15]

    Haldane F D M 1991 Phys. Rev. Lett. 67 937

    [16]

    Wu Y S 1994 Phys. Rev. Lett. 73 922

    [17]

    Bhaduri R K, Murthy M V N, Srivastava M K 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1775

    [18]

    Qin F, Chen J S 2009 Phys. Rev. A 79 043625

    [19]

    Bhaduri R K, Murthy M V N, Brack M 2008 J. Phys. B : At. Mol. Opt. Phys. 41 115301

    [20]

    Qin F, Chen J S 2010 J. Phys. B: At. Mol. Opt. Phys. 43 055302

    [21]

    Qin F, Chen J S 2012 Phys. Lett. A 376 1191

    [22]

    Liu K, Chen J S 2011 Chin. Phys. B 20 020501

    [23]

    Sevinli S, Tanatar B 2007 Phys. Lett. A 371 389

    [24]

    Franco D, Stefano G, Lev P P, Sandro S 1999 Rev. Mod.Phys. 71 463

    [25]

    Sisman A, Muller I 2004 Phys. Lett. A 320 360

    [26]

    Sisman A 2004 J. Phys. A: Math. Gen. 37 11353

    [27]

    Pang H, Dai W S, Xie M 2006 J. Phys. A: Math. Gen. 39 2563

    [28]

    Dai W S, Xie M 2003 Phys. Lett. A 311 340

    [29]

    Su D G, Ou C J, Wang A Q P, Chen J C 2009 Chin. Phys. B 18 5189

    [30]

    Yuan D Q 2014 Acta Phys. Sin. 63 170501 (in Chinese) [袁都奇 2014 物理学报 63 170501]

    [31]

    Iguchi K 1997 Phys. Rev. Lett. 78 3233

    [32]

    Hassan A S, EI-Badry A M 2009 Physica B 404 1947

    [33]

    Ingold G L, Lambrecht A A 1998 Eur. Phys. J. D 1 29

  • [1]

    Regal C A, Greiner M, Jin D S 2004 Phys. Rev. Lett. 92 040403

    [2]

    Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruell L, Kokkelmans S J J M F, Salomon C 2004 Phys. Rev. Lett. 93 050401

    [3]

    Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag H J, Grimm R 2004 Phys. Rev. Lett. 92 120401

    [4]

    Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H, Ketterle W 2005 Nature 435 1047

    [5]

    Romans M W J, Stoof H T C 2005 Phys. Rev. Lett. 95 260407

    [6]

    Ho T L 2004 Phys. Rev. Lett. 92 090402

    [7]

    Hu H, Drummond P D, Liu X J 2007 Nat. Phys. 3 469

    [8]

    Luo L, Clancy B, Joseph J, Kinast J, Thomas J E 2007 Phys. Rev. Lett. 98 080402

    [9]

    Kinast J, Turlapov A, Thomas J E, Chen Q J, Stajic J, Levin K 2005 Science 307 1296

    [10]

    Luo L, Thomas J E 2009 J. Low Temp. Phys. 154 1

    [11]

    Joseph J, Clancy B, Luo L, Kinast J, Turlapov A, Thomas J E 2007 Phys. Rev. Lett. 98 170401

    [12]

    Papenbrock T 2005 Phys. Rev. A 72 041603

    [13]

    Hu H, Liu X J, Drummond P D 2010 New J. Phys. 12 063038

    [14]

    Bulgac A, Drut J E, Magierski P 2006 Phys. Rev. Lett. 96 090404

    [15]

    Haldane F D M 1991 Phys. Rev. Lett. 67 937

    [16]

    Wu Y S 1994 Phys. Rev. Lett. 73 922

    [17]

    Bhaduri R K, Murthy M V N, Srivastava M K 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1775

    [18]

    Qin F, Chen J S 2009 Phys. Rev. A 79 043625

    [19]

    Bhaduri R K, Murthy M V N, Brack M 2008 J. Phys. B : At. Mol. Opt. Phys. 41 115301

    [20]

    Qin F, Chen J S 2010 J. Phys. B: At. Mol. Opt. Phys. 43 055302

    [21]

    Qin F, Chen J S 2012 Phys. Lett. A 376 1191

    [22]

    Liu K, Chen J S 2011 Chin. Phys. B 20 020501

    [23]

    Sevinli S, Tanatar B 2007 Phys. Lett. A 371 389

    [24]

    Franco D, Stefano G, Lev P P, Sandro S 1999 Rev. Mod.Phys. 71 463

    [25]

    Sisman A, Muller I 2004 Phys. Lett. A 320 360

    [26]

    Sisman A 2004 J. Phys. A: Math. Gen. 37 11353

    [27]

    Pang H, Dai W S, Xie M 2006 J. Phys. A: Math. Gen. 39 2563

    [28]

    Dai W S, Xie M 2003 Phys. Lett. A 311 340

    [29]

    Su D G, Ou C J, Wang A Q P, Chen J C 2009 Chin. Phys. B 18 5189

    [30]

    Yuan D Q 2014 Acta Phys. Sin. 63 170501 (in Chinese) [袁都奇 2014 物理学报 63 170501]

    [31]

    Iguchi K 1997 Phys. Rev. Lett. 78 3233

    [32]

    Hassan A S, EI-Badry A M 2009 Physica B 404 1947

    [33]

    Ingold G L, Lambrecht A A 1998 Eur. Phys. J. D 1 29

  • [1] 袁都奇. 三维简谐势阱中玻色-爱因斯坦凝聚的边界效应. 物理学报, 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [2] 何天琛, 李吉. 利用Kapitza-Dirac脉冲操控简谐势阱中冷原子测量重力加速度. 物理学报, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [3] 唐黎明, 王 艳, 王 丹, 王玲玲. 边界条件对介电量子波导中声子输运性质的影响. 物理学报, 2007, 56(1): 437-442. doi: 10.7498/aps.56.437
    [4] 崔海涛, 王林成, 衣学喜. 低维俘获原子的玻色-爱因斯坦凝聚中的有限粒子数效应. 物理学报, 2004, 53(4): 991-995. doi: 10.7498/aps.53.991
    [5] 鱼自发, 吴建鹏, 王鹏程, 张娇娇, 唐荣安, 薛具奎. 超流Fermi气体在非简谐势阱中的集体激发. 物理学报, 2012, 61(1): 010301. doi: 10.7498/aps.61.010301
    [6] 王翀, 闫珂柱. 简谐势阱中非理想气体玻色-爱因斯坦凝聚转变温度的数值研究. 物理学报, 2004, 53(5): 1284-1288. doi: 10.7498/aps.53.1284
    [7] 闫珂柱, 谭维翰. 简谐势阱中具有吸引相互作用原子体系的玻色-爱因斯坦凝聚. 物理学报, 2000, 49(10): 1909-1911. doi: 10.7498/aps.49.1909
    [8] 赵建华, 陈 勃, 王德亮. 纳米晶锐钛矿相TiO2的非简谐效应和声子局域. 物理学报, 2008, 57(5): 3077-3084. doi: 10.7498/aps.57.3077
    [9] 张恒, 段文山. 双势阱中玻色-费米混合气体的周期调制效应. 物理学报, 2013, 62(16): 160303. doi: 10.7498/aps.62.160303
    [10] 郝大鹏, 唐刚, 夏辉, 韩奎, 寻之朋. 含遮蔽抛射沉积模型的有限尺寸效应. 物理学报, 2011, 60(3): 038102. doi: 10.7498/aps.60.038102
    [11] 熊小明, 周世勋. 分数量子Hall效应的有限集团研究. 物理学报, 1987, 36(12): 1630-1634. doi: 10.7498/aps.36.1630
    [12] 杜功焕. 非线性有限束光声效应理论. 物理学报, 1988, 37(5): 769-775. doi: 10.7498/aps.37.769
    [13] 吴颖, 姚凯伦. 交流Josephson效应中的有限波数影响. 物理学报, 1990, 39(8): 132-137. doi: 10.7498/aps.39.132
    [14] 谢彦波, 汪秉宏, 全宏俊, 杨伟松, 王卫宁. EZ模型中的有限尺寸效应. 物理学报, 2003, 52(10): 2399-2403. doi: 10.7498/aps.52.2399
    [15] 余学才, 叶玉堂, 程 琳. 势阱中玻色-爱因斯坦凝聚气体的势场有效性和粒子数极限判据. 物理学报, 2006, 55(2): 551-554. doi: 10.7498/aps.55.551
    [16] 张润东, 阎凤利, 李伯臧. 由含时边界条件的两种有限深量子势阱构造的哈密顿算符和它们的复BERRY相位. 物理学报, 1998, 47(10): 1585-1599. doi: 10.7498/aps.47.1585
    [17] 吴兴龙. 压缩粒子数态中振幅k次幂的压缩效应. 物理学报, 1994, 43(9): 1433-1440. doi: 10.7498/aps.43.1433
    [18] 张汉壮, 高锦岳. 光场的空间横向效应对无粒子数反转光放大增益的影响. 物理学报, 1997, 46(12): 2330-2343. doi: 10.7498/aps.46.2330
    [19] 李景德. 晶格振动声学支的边界耦合效应. 物理学报, 1987, 36(7): 1010-1018. doi: 10.7498/aps.36.1010
    [20] 李景德. 晶格振动声学支的边界耦合效应. 物理学报, 1987, 36(8): 1010-1018.
  • 引用本文:
    Citation:
计量
  • 文章访问数:  543
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-19
  • 修回日期:  2016-06-13
  • 刊出日期:  2016-09-20

囚禁有限unitary费米气体的热力学性质

  • 1. 宝鸡文理学院物理与光电技术学院, 宝鸡 721016
  • 通信作者: 袁都奇, yuanduqi@163.com
    基金项目: 

    陕西省自然科学基金(批准号:2012JM1006)资助的课题.

摘要: 应用分数不相容统计,研究了三维简谐势阱中有限unitary费米气体在绝对零度和有限温度下的热力学性质,并与势阱中满足热力学极限条件的unitary费米气体进行了比较. 结果表明:绝对零度时有限系统的费米能、粒子平均能量随粒子数的增加而增大,并以满足热力学极限系统的对应物理量为上限,有限系统的费米能、粒子平均能量随势阱边界变化存在极大值. 有限温度条件下给定粒子数时,有限系统的粒子平均能量、粒子平均熵、粒子平均热容量分别存在对应的特征温度,当温度等于物理量对应的特征温度时,有限系统与满足热力学极限系统的同一物理量相等,低于(或高于)物理量对应的特征温度时,有限系统的物理量将大于(或小于)满足热力学极限系统的同一量. 给定温度条件下,有限系统粒子平均能量、粒子平均熵、粒子平均热容量分别存在对应的特征粒子数,当粒子数等于物理量对应的特征粒子数时,有限系统与满足热力学极限系统的同一物理量相等,少于(或多于)物理量对应的特征粒子数时,有限系统的物理量将小于(或大于)满足热力学极限系统的同一量.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回