搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电荷生成层中引入超薄金属Ag层对串联有机发光二极管性能的提升

陶洪 高栋雨 刘佰全 王磊 邹建华 徐苗 彭俊彪

电荷生成层中引入超薄金属Ag层对串联有机发光二极管性能的提升

陶洪, 高栋雨, 刘佰全, 王磊, 邹建华, 徐苗, 彭俊彪
PDF
导出引用
导出核心图
  • 为了获得高效、长寿命的白光有机发光二极管(white organic light-emitting diode,WOLED),一种方法是将不同颜色的发光单元通过电荷生成层(charge generation layer,CGL)串联起来获得白光,即串联WOLED.其中,CGL的选择与设计是高性能串联白光器件的关键.本文首先从绿光OLED着手,通过在CGL层中引入超薄的Ag金属层,获得了高效、长寿命的串联器件.引入超薄Ag金属层的绿光串联OLED的最大亮度达到了290000 cd/m2,分别是单层器件和无超薄Ag金属层器件的2.9倍与2.4倍;在1000 cd/m2下,引入超薄Ag金属层的器件电流效率达到了59.5 cd/A,相比于无超薄金属层的串联器件的58.7 cd/A,以及非串联的单层器件的17.1 cd/A,分别增加了1.4%与248%;同时,与无超薄层的串联器件相比,引入超薄Ag金属层的器件工作电压从8.6 V降为7.2 V;功率效率从21.5 lm/W上升为26 lm/W.特别地,在初始测试亮度为10000 cd/m2的条件下,包含超薄Ag金属层的串联器件的工作寿命T80超过了250 h,与无超薄层串联器件仅2.7 h寿命相比,提高近100倍.最后,我们使用优化后的CGL制备出高性能串联WOLED,在1000 cd/m2下,电流效率达到了75.9 cd/A,功率效率达到了36.1 lm/W,且10000 cd/m2的初始亮度下T80有77 h.这些优异的器件性能归结于超薄金属层的引入,抑制了Bphen:CsCO3与HAT-CN在界面处的相互扩散,同时也促进了载流子的生成与传输.这一结果为设计高效且稳定的WOLED提供了有效的思路.
      通信作者: 王磊, mslwang@scut.edu.cn;psjbpeng@scut.edu.cn ; 彭俊彪, mslwang@scut.edu.cn;psjbpeng@scut.edu.cn
    • 基金项目: 国家重点基础研究发展规划(批准号:2015CB655004)、国家自然科学基金(批准号:61574061,61574062)、广东省科技计划(批准号:2014B090916002,2015B090915001,2015B090914003)、广东省特支计划科技创新青年拔尖人才项目(批准号:2014TQ01C321)、中国博士后科研基金(批准号:2015M582380,2016M590779)和广州市珠江科技新星专项(批准号:201506010015,201505051412482)资助的课题.
    [1]

    Liu B Q, Gao D Y, Wang J B, Zou J H, Peng J B 2015 Acta Phys.-Chim. Sin. 31 1823(in Chinese)[刘佰全, 高栋雨, 王剑斌, 邹建华, 彭俊彪2015物理化学学报31 1823]

    [2]

    Liu B Q, Tao H, Su Y J, Gao D Y, Lan L F, Zou J H, Peng J B 2013 Chin. Phys. B 22 077303

    [3]

    Liu B Q, Luo D X, Zou J H, Gao D Y, Ning H L, Wang L, Peng J B, Cao Y 2015 J. Mater. Chem. C 3 6359

    [4]

    Nishimoto T, Yasuda T, Lee S Y, Kondo R, Adachi C 2014 Mater. Horiz. 1 264

    [5]

    Zhang D, Duan L, Zhang Y, Cai M, Zhang D, Qiu Y 2015 Light Sci. Appl. 4 232

    [6]

    Meyer J, Shu A, Kröger M, Kahn A 2010 Appl. Phys. Lett. 96 133308

    [7]

    Wang Q, Ma D G 2010 Chem. Soc. Rev. 39 2387

    [8]

    Kanno H, Giebink N C, Sun Y, Forrest S R 2006 Appl. Phys. Lett. 89 023503

    [9]

    Zhang H M, Dai Y F, Ma D G 2008 J. Phys. D:Appl. Phys. 41 102006

    [10]

    Chiba T, Pu Y J, Kido J 2015 Adv. Mater. 27 4681

    [11]

    Hofle S, Bernhard C, Bruns M, Kubel C, Scherer T, Lemmer U, Colsmann A 2015 ACS Appl. Mater. Interfaces 7 8132

    [12]

    Ran G Z, Jiang D F, Kan Q, Chen H D 2010 Appl. Phys. Lett. 97 233304

    [13]

    Chen Y H, Chen J S, Ma D G, Yan D H, Wang L X, Zhu F R 2011 Appl. Phys. Lett. 98 243309

    [14]

    Liu J, Shi X D, Wu X K, Wang J, He G F 2015 J. Disp. Technol. 11 4

    [15]

    Kanno H, Holmes R J, Sun Y, Kena-Cohen S, Forrest S R 2006 Adv. Mater. 18 339

    [16]

    Chen C W, Lu Y J, Wu C C, Wu E H, Yang Y 2005 Appl. Phys. Lett. 87 241121

    [17]

    Hamwi S, Meyer J, Kroger M, Winkler T, Witte M, Riedl T, Kahn A, Kowalsky W 2010 Adv. Funct. Mater. 20 1762

    [18]

    Zhou D Y, Shi X B, Liu Y, Gao C H, Wang K, Liao L S 2014 Org. Electron. 15 3694

    [19]

    Chen C W, Lu Y J, Wu C C, Wu E H, Chu C C, Yang Y 2005 Appl. Phys. Lett. 87 241121

    [20]

    Sun H D, Chen Y H, Chen J S, Ma D G 2016 IEEE J. Sel. Top. Quant. Electron. 22 1

    [21]

    Meyer J, Kroger M, Hamwi S, Gnam F, Riedl T, Kowalsky W, Kahn A 2010 Appl. Phys. Lett. 96 193302

    [22]

    Liao L S, Klubek K P, Tang C W 2004 Appl. Phys. Lett. 84 167

    [23]

    Leem D S, Lee J H, Kim J J, Kang J W 2008 Appl. Phys. Lett. 93 103304

    [24]

    Lee S H, Lee J H, Kim K H, Yoo S J, Kim T G, Kim J W, Kim J J 2012 Org. Electron. 13 2346

    [25]

    Kim D H, Kim T W 2014 Org. Electron. 15 3452

    [26]

    Qi X F, Slootsky M, Forrest S 2008 Appl. Phys. Lett. 93 193306

    [27]

    Liao L S, Klubek K P 2008 Appl. Phys. Lett. 92 223311

    [28]

    Law C W, Lau K M, Fung M K, Chan M Y, Wong F L, Lee C S, Lee S T 2006 Appl. Phys. Lett. 89 133511

    [29]

    Wang Y P, Mi B X, Gao Z Q, Guo Q, Wang W 2011 Acta Phys. Sin. 60 087808 (in Chinese)[王旭鹏, 密保秀, 高志强, 郭晴, 黄维2011物理学报60 087808]

    [30]

    Zhou D Y, Zu F S, Zhang Y J, Shi X B, Aziz H, Liao L S 2014 Appl. Phys. Lett. 105 083301

    [31]

    Sun H D, Guo Q X, Yang D Z, Chen Y H, Chen J S, Ma D G 2015 ACS Photon. 2 271

    [32]

    Zhao Y B, Tan S T, Demir H V, Sun X W 2015 Org. Electron. 23 70

    [33]

    Diez C, Reusch T C G, Lang E, Dobbertin T, Brtting W 2012 J. Appl. Phys. 111 103107

    [34]

    Zhou D Y, Siboni H Z, Wang Q, Liao L S, Aziz H 2014 J. Appl. Phys. 116 223708

    [35]

    Yu J N, Lin H, Tong L, Li C, Zhang H, Zhang J H, Wang Z X, Wei B 2013 Phys. Status Solidi A 210 408

    [36]

    Liu B Q, Xu M, Wang L, Tao H, Su Y J, Gao D Y, Lan L F, Zou J H, Peng J B 2014 Nano-Micro Lett. 6 335

    [37]

    Liu B Q, Xu M, Tao H, Su Y J, Gao D Y, Zou J H, Lan L F, Peng J B 2014 Chin. Sci. Bull. 59 3090

    [38]

    Liu B Q, Wang L, Gao D Y, Xu M, Zhu X H, Zou J H, Lan L F, Ning H L, Peng J B, Cao Y 2015 Mater. Horiz. 2 536

    [39]

    Fan C, Yang C, Chem 2014 Soc. Rev. 43 6439

    [40]

    Yang X, Zhou G, Wong W Y 2015 Chem. Soc. Rev. 44 8484

  • [1]

    Liu B Q, Gao D Y, Wang J B, Zou J H, Peng J B 2015 Acta Phys.-Chim. Sin. 31 1823(in Chinese)[刘佰全, 高栋雨, 王剑斌, 邹建华, 彭俊彪2015物理化学学报31 1823]

    [2]

    Liu B Q, Tao H, Su Y J, Gao D Y, Lan L F, Zou J H, Peng J B 2013 Chin. Phys. B 22 077303

    [3]

    Liu B Q, Luo D X, Zou J H, Gao D Y, Ning H L, Wang L, Peng J B, Cao Y 2015 J. Mater. Chem. C 3 6359

    [4]

    Nishimoto T, Yasuda T, Lee S Y, Kondo R, Adachi C 2014 Mater. Horiz. 1 264

    [5]

    Zhang D, Duan L, Zhang Y, Cai M, Zhang D, Qiu Y 2015 Light Sci. Appl. 4 232

    [6]

    Meyer J, Shu A, Kröger M, Kahn A 2010 Appl. Phys. Lett. 96 133308

    [7]

    Wang Q, Ma D G 2010 Chem. Soc. Rev. 39 2387

    [8]

    Kanno H, Giebink N C, Sun Y, Forrest S R 2006 Appl. Phys. Lett. 89 023503

    [9]

    Zhang H M, Dai Y F, Ma D G 2008 J. Phys. D:Appl. Phys. 41 102006

    [10]

    Chiba T, Pu Y J, Kido J 2015 Adv. Mater. 27 4681

    [11]

    Hofle S, Bernhard C, Bruns M, Kubel C, Scherer T, Lemmer U, Colsmann A 2015 ACS Appl. Mater. Interfaces 7 8132

    [12]

    Ran G Z, Jiang D F, Kan Q, Chen H D 2010 Appl. Phys. Lett. 97 233304

    [13]

    Chen Y H, Chen J S, Ma D G, Yan D H, Wang L X, Zhu F R 2011 Appl. Phys. Lett. 98 243309

    [14]

    Liu J, Shi X D, Wu X K, Wang J, He G F 2015 J. Disp. Technol. 11 4

    [15]

    Kanno H, Holmes R J, Sun Y, Kena-Cohen S, Forrest S R 2006 Adv. Mater. 18 339

    [16]

    Chen C W, Lu Y J, Wu C C, Wu E H, Yang Y 2005 Appl. Phys. Lett. 87 241121

    [17]

    Hamwi S, Meyer J, Kroger M, Winkler T, Witte M, Riedl T, Kahn A, Kowalsky W 2010 Adv. Funct. Mater. 20 1762

    [18]

    Zhou D Y, Shi X B, Liu Y, Gao C H, Wang K, Liao L S 2014 Org. Electron. 15 3694

    [19]

    Chen C W, Lu Y J, Wu C C, Wu E H, Chu C C, Yang Y 2005 Appl. Phys. Lett. 87 241121

    [20]

    Sun H D, Chen Y H, Chen J S, Ma D G 2016 IEEE J. Sel. Top. Quant. Electron. 22 1

    [21]

    Meyer J, Kroger M, Hamwi S, Gnam F, Riedl T, Kowalsky W, Kahn A 2010 Appl. Phys. Lett. 96 193302

    [22]

    Liao L S, Klubek K P, Tang C W 2004 Appl. Phys. Lett. 84 167

    [23]

    Leem D S, Lee J H, Kim J J, Kang J W 2008 Appl. Phys. Lett. 93 103304

    [24]

    Lee S H, Lee J H, Kim K H, Yoo S J, Kim T G, Kim J W, Kim J J 2012 Org. Electron. 13 2346

    [25]

    Kim D H, Kim T W 2014 Org. Electron. 15 3452

    [26]

    Qi X F, Slootsky M, Forrest S 2008 Appl. Phys. Lett. 93 193306

    [27]

    Liao L S, Klubek K P 2008 Appl. Phys. Lett. 92 223311

    [28]

    Law C W, Lau K M, Fung M K, Chan M Y, Wong F L, Lee C S, Lee S T 2006 Appl. Phys. Lett. 89 133511

    [29]

    Wang Y P, Mi B X, Gao Z Q, Guo Q, Wang W 2011 Acta Phys. Sin. 60 087808 (in Chinese)[王旭鹏, 密保秀, 高志强, 郭晴, 黄维2011物理学报60 087808]

    [30]

    Zhou D Y, Zu F S, Zhang Y J, Shi X B, Aziz H, Liao L S 2014 Appl. Phys. Lett. 105 083301

    [31]

    Sun H D, Guo Q X, Yang D Z, Chen Y H, Chen J S, Ma D G 2015 ACS Photon. 2 271

    [32]

    Zhao Y B, Tan S T, Demir H V, Sun X W 2015 Org. Electron. 23 70

    [33]

    Diez C, Reusch T C G, Lang E, Dobbertin T, Brtting W 2012 J. Appl. Phys. 111 103107

    [34]

    Zhou D Y, Siboni H Z, Wang Q, Liao L S, Aziz H 2014 J. Appl. Phys. 116 223708

    [35]

    Yu J N, Lin H, Tong L, Li C, Zhang H, Zhang J H, Wang Z X, Wei B 2013 Phys. Status Solidi A 210 408

    [36]

    Liu B Q, Xu M, Wang L, Tao H, Su Y J, Gao D Y, Lan L F, Zou J H, Peng J B 2014 Nano-Micro Lett. 6 335

    [37]

    Liu B Q, Xu M, Tao H, Su Y J, Gao D Y, Zou J H, Lan L F, Peng J B 2014 Chin. Sci. Bull. 59 3090

    [38]

    Liu B Q, Wang L, Gao D Y, Xu M, Zhu X H, Zou J H, Lan L F, Ning H L, Peng J B, Cao Y 2015 Mater. Horiz. 2 536

    [39]

    Fan C, Yang C, Chem 2014 Soc. Rev. 43 6439

    [40]

    Yang X, Zhou G, Wong W Y 2015 Chem. Soc. Rev. 44 8484

  • [1] 牛连斌, 关云霞. 富勒烯掺杂NPB空穴传输层的有机电致发光器件. 物理学报, 2009, 58(7): 4931-4935. doi: 10.7498/aps.58.4931
    [2] 张娟, 焦志强, 闫华杰, 陈福栋, 黄清雨, 康亮亮, 刘晓云, 王路, 袁广才. 微腔效应对顶发射串联蓝光有机电致发光器件性能的影响. 物理学报, 2020, 69(9): 096104. doi: 10.7498/aps.69.20191576
    [3] 鲁 欣, 奚婷婷, 张 杰, 李英竣. 超短超强脉冲激光在空气中产生的电离通道的寿命研究. 物理学报, 2004, 53(10): 3404-3408. doi: 10.7498/aps.53.3404
    [4] 陈依新, 沈光地, 韩金茹, 李建军, 郭伟玲. 不同表面结构的半导体发光二极管的效率与寿命的研究. 物理学报, 2010, 59(1): 545-549. doi: 10.7498/aps.59.545
    [5] 陈平, 赵理, 段羽, 程刚, 赵毅, 刘式墉. 一种用于堆叠结构有机发光二极管的新的电荷生成层. 物理学报, 2011, 60(9): 097203. doi: 10.7498/aps.60.097203
    [6] 马莉, 沈光地, 陈依新, 蒋文静, 郭伟玲, 徐晨, 高志远. 新型AlGaInP系发光二极管饱和特性与寿命的研究. 物理学报, 2014, 63(3): 037201. doi: 10.7498/aps.63.037201
    [7] 张新稳, 胡琦. 有机电致发光器件的稳定性. 物理学报, 2012, 61(20): 207802. doi: 10.7498/aps.61.207802
    [8] 乔士柱, 赵俊卿, 贾振锋, 张宁玉, 王凤翔, 付刚, 季燕菊. 自旋极化有机电致发光器件中单线态与三线态激子的形成及调控. 物理学报, 2010, 59(5): 3564-3570. doi: 10.7498/aps.59.3564
    [9] 文雯, 李璐, 于军胜, 蒋亚东, 王博. 基于红色荧光染料3-(dicyanomethylene)-5, 5-dimethyl-1-(4-dimethylamino-styryl) cyclohexene的高性能白色有机电致发光器件. 物理学报, 2009, 58(11): 8014-8020. doi: 10.7498/aps.58.8014
    [10] 廖健飞, 夏光琼, 吴加贵, 许 黎, 吴正茂. 基于光电负反馈的激光混沌串联同步系统研究. 物理学报, 2007, 56(11): 6301-6306. doi: 10.7498/aps.56.6301
    [11] 师应龙, 董晨钟. C Ⅱ离子1s内壳层激发态的结构和衰变特性的理论研究. 物理学报, 2009, 58(4): 2350-2357. doi: 10.7498/aps.58.2350
    [12] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量. 物理学报, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [13] 王小霞, 廖显恒, 罗积润, 赵青兰, 张晓伟. 新型贮存式氧化物阴极寿命机理的初步探讨. 物理学报, 2009, 58(2): 1280-1286. doi: 10.7498/aps.58.1280
    [14] 白旭芳, 陈磊, 额尔敦朝鲁. 电磁场中施主中心量子点内磁极化子态寿命与qubit退相干. 物理学报, 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [15] 唐晓庆, 于军胜, 李 璐, 王 军, 蒋亚东. 铱金属配合物磷光材料掺杂聚合物体系的电致发光特性. 物理学报, 2008, 57(10): 6620-6626. doi: 10.7498/aps.57.6620
    [16] 杨少鹏, 郑红芳, 李春雷, 傅广生, 李晓苇, 许春华, 李金培. 纳米硫化镍增感的溴化银微晶中光电子衰减特性研究. 物理学报, 2006, 55(5): 2144-2148. doi: 10.7498/aps.55.2144
    [17] 曹方宇, 熊涛, 高传波, 陈祥磊, 周先意, 翁惠民, 叶邦角, 韩荣典, 杜淮江. Fe3O4-C核壳型纳米纤维的正电子研究. 物理学报, 2009, 58(10): 6946-6950. doi: 10.7498/aps.58.6946
    [18] 郝广辉, 韩攀阳, 李兴辉, 李泽鹏, 高玉娟. 真空沟道结构GaAs光电阴极电子发射特性. 物理学报, 2020, 69(10): 108501. doi: 10.7498/aps.69.20191893
    [19] 张敏, 王小霞, 罗积润, 廖显恒. 等离子喷涂含钪氧化物阴极制备及发射特性研究. 物理学报, 2012, 61(7): 077901. doi: 10.7498/aps.61.077901
    [20] 漆世锴, 王小霞, 王兴起, 胡明玮, 刘理, 曾伟. 大功率磁控管用新型Y2Hf2O7陶瓷阴极研究. 物理学报, 2020, 69(3): 037901. doi: 10.7498/aps.69.20191496
  • 引用本文:
    Citation:
计量
  • 文章访问数:  894
  • PDF下载量:  313
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-12
  • 修回日期:  2016-10-14
  • 刊出日期:  2017-01-05

电荷生成层中引入超薄金属Ag层对串联有机发光二极管性能的提升

    基金项目: 

    国家重点基础研究发展规划(批准号:2015CB655004)、国家自然科学基金(批准号:61574061,61574062)、广东省科技计划(批准号:2014B090916002,2015B090915001,2015B090914003)、广东省特支计划科技创新青年拔尖人才项目(批准号:2014TQ01C321)、中国博士后科研基金(批准号:2015M582380,2016M590779)和广州市珠江科技新星专项(批准号:201506010015,201505051412482)资助的课题.

摘要: 为了获得高效、长寿命的白光有机发光二极管(white organic light-emitting diode,WOLED),一种方法是将不同颜色的发光单元通过电荷生成层(charge generation layer,CGL)串联起来获得白光,即串联WOLED.其中,CGL的选择与设计是高性能串联白光器件的关键.本文首先从绿光OLED着手,通过在CGL层中引入超薄的Ag金属层,获得了高效、长寿命的串联器件.引入超薄Ag金属层的绿光串联OLED的最大亮度达到了290000 cd/m2,分别是单层器件和无超薄Ag金属层器件的2.9倍与2.4倍;在1000 cd/m2下,引入超薄Ag金属层的器件电流效率达到了59.5 cd/A,相比于无超薄金属层的串联器件的58.7 cd/A,以及非串联的单层器件的17.1 cd/A,分别增加了1.4%与248%;同时,与无超薄层的串联器件相比,引入超薄Ag金属层的器件工作电压从8.6 V降为7.2 V;功率效率从21.5 lm/W上升为26 lm/W.特别地,在初始测试亮度为10000 cd/m2的条件下,包含超薄Ag金属层的串联器件的工作寿命T80超过了250 h,与无超薄层串联器件仅2.7 h寿命相比,提高近100倍.最后,我们使用优化后的CGL制备出高性能串联WOLED,在1000 cd/m2下,电流效率达到了75.9 cd/A,功率效率达到了36.1 lm/W,且10000 cd/m2的初始亮度下T80有77 h.这些优异的器件性能归结于超薄金属层的引入,抑制了Bphen:CsCO3与HAT-CN在界面处的相互扩散,同时也促进了载流子的生成与传输.这一结果为设计高效且稳定的WOLED提供了有效的思路.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回