搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al掺杂和空位对ZnO磁性影响的第一性原理研究

侯清玉 李勇 赵春旺

Al掺杂和空位对ZnO磁性影响的第一性原理研究

侯清玉, 李勇, 赵春旺
PDF
导出引用
导出核心图
  • Al掺杂和Zn空位在ZnO中或Al掺杂和O空位在ZnO中的磁性来源和机理的认识频有争议.为了解决本问题,本文采用基于自旋密度泛函理论框架下的广义梯度近似(GGA+U)平面波超软赝势方法,用第一性原理对其进行了研究,发现Al掺杂和O空位共存在ZnO中没有磁性;Al掺杂和Zn空位在ZnO中有磁性,并且,磁性来源主要由Zn空位产生的空穴为媒介,使得Zn空位附近O 2p态和Zn 4s态电子交换作用形成的.其次,Al掺杂和Zn空位在ZnO中或Al掺杂和O空位在ZnO中,Al掺杂和Zn空位或O空位相对位置较近时,掺杂体系形成能最低,掺杂和空位越容易,稳定性越高.
      通信作者: 侯清玉, by0501119@126.com
    • 基金项目: 国家自然科学基金(批准号:61366008,61664007,11672175)资助的课题.
    [1]

    Srikant V, Clarke D R 1998 J. Appl. Phys. 83 5447

    [2]

    Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B, Gehring G A 2003 Nat. Mater. 2 673

    [3]

    KittilstvedK R, Liu W K, Almelin D R 2006 Nat. Mater. 5 291

    [4]

    Liu S H, Hsu H S, Venkataiah G, Qi X, Lin C R, Lee J F, Liang K S, Huang J C A 2010 Appl. Phys. Lett. 96 262504

    [5]

    Fukuma Y, Odawara F, Asada H, Koyanagi T 2008 Phys. Rev. B 78 104417

    [6]

    Tian Y F, Li Y F, He M, Putra I A, Peng H Y, Yao B, Cheong S A, Wu T 2011 Appl. Phys. Lett. 98 162503

    [7]

    YanH L, Wang J B, Zhong X L, Zhou Y C 2008 Appl. Phys. Lett. 93 142502

    [8]

    Yan H L, Zhong X L, Wang J B, Huang G J, Ding S L, Zhou G C, Zhou Y C 2007 Appl. Phys. Lett. 90 082503

    [9]

    Baset T A A, Fang Y W, Anis B, Duan C G, Hafiez M A 2016 Nanoscal. Res. Lett. 11 115

    [10]

    Shatnawi M, Alsmadi A M, Bsoul I, Salameh B, Alna'washi G A, Dweri F A, Akkad F E 2016 J. Alloy. Compd. 655 244

    [11]

    Jadhav J, Biswas S 2016 J. Alloy. Compd. 664 71

    [12]

    Kseoğlu Y 2016 Ceram. Int. 42 9190

    [13]

    Mickan M, Helmersson U, Rinnert H, Ghanbaja J, Mulle D, Horwat D 2016 Sol. Energ. Mat. Sol. C 157 742

    [14]

    Kumar S, Deepika, Tripathi M, Vaibhav P, Kumar A, Kumar R, Choudhary R J, Phase D M 2016 J. Magn. Magn. Mater. 419 68

    [15]

    Hong J, Katsumata K I, Matsushita N 2016 J. Electron. Mater. 45 4875

    [16]

    Sreedhar A, Kwon J H, Yi J, Jin S G 2016 Ceram. Int. 42 14456

    [17]

    Zhang J M, Gao D, Xu K W 2012 Sci. China: Phys. Mech. Astron. 55 428

    [18]

    Khuili M, Fazouan N, Makarim H A E, Halani G E, Atmani E H 2016 J. Alloy. Compd. 688 368

    [19]

    Zhang T, Song L X, Chen Z Z, Shi E W, Chao L X, Zhang H W 2006 Appl. Phys. Lett. 89 172502

    [20]

    Hou Q Y, Dong H Y, Ying C, Ma W 2012 Acta Phys. Sin. 61 167102 (in Chinese) [侯清玉, 董红英, 迎春, 马文 2012 物理学报 61 167102]

    [21]

    Alo D Q, Zhang J, Yang G J, Zhang J L, Shi Z H, Qi J, Zhang Z H, Xue D S 2010 J. Phys. Chem. C 114 13477

    [22]

    Liu Y Y, Zhou W, Wu P 2014 J. Alloy. Compd. 615 401

    [23]

    Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1

    [24]

    Lee H J, Jeong S Y, Cho C R, Park C H 2002 Appl. Phys. Lett. 81 4020

    [25]

    Kodu M, Arroval T, Avarmaa T, Jaaniso R, Kink I, Leinberg S, Savi K, Timusk M 2014 Appl. Surf. Sci. 320 756

    [26]

    Hsu C H, Chen D H 2010 Nanotechnology 21 285603

    [27]

    Ma X G, Wu Y, L Y H, Zhu Y F 2013 J. Phys. Chem. C 117 26029

    [28]

    Yingsamphancharoen T, Nakarungsee P, Herng T S, Ding J, Tang I M, Thongmee S 2016 J. Magn. Magn. Mater. 419 274

    [29]

    Zhou B, Wu Y S, Wu L L, Zou K, Gai H D 2009 Physica E 41 705

    [30]

    Srivastava A K, Kumar J 2013 Sci. Technol. Adv. Mater. 14 065002

    [31]

    Wang Q J, Wang J B, Zhong X L, Tan Q H, Hu Z, Zhou Y C 2012 Appl. Phys. Lett. 100 132407

    [32]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [33]

    Fan J C, Sreekanth K M, Xie Z, Chang S L, Rao K V 2013 Prog. Mater. Sci. 58 874

    [34]

    Zener C 1951 Phys. Rev 82 403

    [35]

    Zener C 1951 Phys. Rev 81 440

    [36]

    Sato K, Dederichs P H, Katayama Y H 2003 Europhys. Lett. 61 403

  • [1]

    Srikant V, Clarke D R 1998 J. Appl. Phys. 83 5447

    [2]

    Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B, Gehring G A 2003 Nat. Mater. 2 673

    [3]

    KittilstvedK R, Liu W K, Almelin D R 2006 Nat. Mater. 5 291

    [4]

    Liu S H, Hsu H S, Venkataiah G, Qi X, Lin C R, Lee J F, Liang K S, Huang J C A 2010 Appl. Phys. Lett. 96 262504

    [5]

    Fukuma Y, Odawara F, Asada H, Koyanagi T 2008 Phys. Rev. B 78 104417

    [6]

    Tian Y F, Li Y F, He M, Putra I A, Peng H Y, Yao B, Cheong S A, Wu T 2011 Appl. Phys. Lett. 98 162503

    [7]

    YanH L, Wang J B, Zhong X L, Zhou Y C 2008 Appl. Phys. Lett. 93 142502

    [8]

    Yan H L, Zhong X L, Wang J B, Huang G J, Ding S L, Zhou G C, Zhou Y C 2007 Appl. Phys. Lett. 90 082503

    [9]

    Baset T A A, Fang Y W, Anis B, Duan C G, Hafiez M A 2016 Nanoscal. Res. Lett. 11 115

    [10]

    Shatnawi M, Alsmadi A M, Bsoul I, Salameh B, Alna'washi G A, Dweri F A, Akkad F E 2016 J. Alloy. Compd. 655 244

    [11]

    Jadhav J, Biswas S 2016 J. Alloy. Compd. 664 71

    [12]

    Kseoğlu Y 2016 Ceram. Int. 42 9190

    [13]

    Mickan M, Helmersson U, Rinnert H, Ghanbaja J, Mulle D, Horwat D 2016 Sol. Energ. Mat. Sol. C 157 742

    [14]

    Kumar S, Deepika, Tripathi M, Vaibhav P, Kumar A, Kumar R, Choudhary R J, Phase D M 2016 J. Magn. Magn. Mater. 419 68

    [15]

    Hong J, Katsumata K I, Matsushita N 2016 J. Electron. Mater. 45 4875

    [16]

    Sreedhar A, Kwon J H, Yi J, Jin S G 2016 Ceram. Int. 42 14456

    [17]

    Zhang J M, Gao D, Xu K W 2012 Sci. China: Phys. Mech. Astron. 55 428

    [18]

    Khuili M, Fazouan N, Makarim H A E, Halani G E, Atmani E H 2016 J. Alloy. Compd. 688 368

    [19]

    Zhang T, Song L X, Chen Z Z, Shi E W, Chao L X, Zhang H W 2006 Appl. Phys. Lett. 89 172502

    [20]

    Hou Q Y, Dong H Y, Ying C, Ma W 2012 Acta Phys. Sin. 61 167102 (in Chinese) [侯清玉, 董红英, 迎春, 马文 2012 物理学报 61 167102]

    [21]

    Alo D Q, Zhang J, Yang G J, Zhang J L, Shi Z H, Qi J, Zhang Z H, Xue D S 2010 J. Phys. Chem. C 114 13477

    [22]

    Liu Y Y, Zhou W, Wu P 2014 J. Alloy. Compd. 615 401

    [23]

    Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1

    [24]

    Lee H J, Jeong S Y, Cho C R, Park C H 2002 Appl. Phys. Lett. 81 4020

    [25]

    Kodu M, Arroval T, Avarmaa T, Jaaniso R, Kink I, Leinberg S, Savi K, Timusk M 2014 Appl. Surf. Sci. 320 756

    [26]

    Hsu C H, Chen D H 2010 Nanotechnology 21 285603

    [27]

    Ma X G, Wu Y, L Y H, Zhu Y F 2013 J. Phys. Chem. C 117 26029

    [28]

    Yingsamphancharoen T, Nakarungsee P, Herng T S, Ding J, Tang I M, Thongmee S 2016 J. Magn. Magn. Mater. 419 274

    [29]

    Zhou B, Wu Y S, Wu L L, Zou K, Gai H D 2009 Physica E 41 705

    [30]

    Srivastava A K, Kumar J 2013 Sci. Technol. Adv. Mater. 14 065002

    [31]

    Wang Q J, Wang J B, Zhong X L, Tan Q H, Hu Z, Zhou Y C 2012 Appl. Phys. Lett. 100 132407

    [32]

    Pickett W E, Moodera J S 2001 Phys. Today 54 39

    [33]

    Fan J C, Sreekanth K M, Xie Z, Chang S L, Rao K V 2013 Prog. Mater. Sci. 58 874

    [34]

    Zener C 1951 Phys. Rev 82 403

    [35]

    Zener C 1951 Phys. Rev 81 440

    [36]

    Sato K, Dederichs P H, Katayama Y H 2003 Europhys. Lett. 61 403

  • [1] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [2] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理第一原理. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [3] 刘英光, 边永庆, 韩中合. 包含倾斜晶界的双晶ZnO的热输运行为. 物理学报, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [4] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [5] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [6] 朱肖丽, 胡耀垓, 赵正予, 张援农. 钡和铯释放的电离层扰动效应对比. 物理学报, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [7] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [8] 黄永峰, 曹怀信, 王文华. 共轭线性对称性及其对\begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-对称量子理论的应用. 物理学报, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [9] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [10] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [11] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
  • 引用本文:
    Citation:
计量
  • 文章访问数:  347
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-11
  • 修回日期:  2016-12-06
  • 刊出日期:  2017-03-20

Al掺杂和空位对ZnO磁性影响的第一性原理研究

  • 1. 内蒙古工业大学理学院, 呼和浩特 010051;
  • 2. 上海海事大学文理学院, 上海 201306;
  • 3. 内蒙古自治区薄膜与涂层重点实验室, 呼和浩特 010051
  • 通信作者: 侯清玉, by0501119@126.com
    基金项目: 

    国家自然科学基金(批准号:61366008,61664007,11672175)资助的课题.

摘要: Al掺杂和Zn空位在ZnO中或Al掺杂和O空位在ZnO中的磁性来源和机理的认识频有争议.为了解决本问题,本文采用基于自旋密度泛函理论框架下的广义梯度近似(GGA+U)平面波超软赝势方法,用第一性原理对其进行了研究,发现Al掺杂和O空位共存在ZnO中没有磁性;Al掺杂和Zn空位在ZnO中有磁性,并且,磁性来源主要由Zn空位产生的空穴为媒介,使得Zn空位附近O 2p态和Zn 4s态电子交换作用形成的.其次,Al掺杂和Zn空位在ZnO中或Al掺杂和O空位在ZnO中,Al掺杂和Zn空位或O空位相对位置较近时,掺杂体系形成能最低,掺杂和空位越容易,稳定性越高.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回