搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳粒子光学散射分析

付成花

微纳粒子光学散射分析

付成花
PDF
导出引用
  • 为实现利用光学方式对微纳尺度粒子性质的研究,探讨了亚微米线及亚微米球对光电磁波的散射效应.微纳米尺度粒子的光学散射,散射粒子尺寸与入射光波长尺寸可满足米氏(Mie)散射条件.利用Matlab数值模拟的方式,将分析结果以模拟图的形式清晰地展现出来.满足尺寸条件的层状粒子以及任意多个散射粒子存在时对电磁波的散射都可采用Mie散射分析方法,并且针对多粒子散射,分析了散射体位于不同位置时对散射造成的影响.通过分析光学散射光场相关的微分散射截面及近场散射电磁场分布,可得出散射光场随散射角度的变化趋势,以及散射光场受各类因素的影响,包括入射光偏振态、散射粒子尺寸、散射粒子结构及粒子构成层数、散射粒子数量等的影响,也包括一些隐含因素对散射光场的影响,如散射粒子与周围介质的相对折射率.本文的科学意义体现在:与入射光波长尺寸可比的亚微米尺度的粒子,可用作传感器,对于其位移的探测可通过光学方式来实现,而由于粒子本身特性对散射光的影响具有一定的参考价值,从而使通过光学方式对机械位移的读出具有更高准确度.研究结果对于光学方式探测亚微米线机械振动具有指导意义.
      通信作者: 付成花, fuchenghua2014@hmfl.ac.cn
    [1]

    van de Hulst H C 1981 Light Scattering by Small Particles (Vol. 1) (New York: Dover) pp119-130

    [2]

    Zhang Q X, Li Y D, Deng X J, Zhang Y M 2011 Acta Phys. Sin. 60 084216 (in Chinese) [张启兴, 李耀东, 邓小玖, 张永明 2011 物理学报 60 084216]

    [3]

    Qian K Y, Ma J, Fu W, Luo Y 2012 Acta Phys. Sin. 61 204201 (in Chinese) [钱可元, 马骏, 付伟, 罗毅 2012 物理学报 61 204201]

    [4]

    Ou J, Jiang Y S, Shao Y W, Qu X S, Hua H Q, Wen D H 2013 Acta Phys. Sin. 62 114201 (in Chinese) [欧军, 江月松, 邵宇伟, 屈晓声, 华厚强, 闻东海 2013 物理学报 62 114201]

    [5]

    Jones R C 1945 Phys. Rev. 68 93

    [6]

    Stratton J A 1941 Electromagneic Theory (New York: McGraw-Hill Book Co.) pp349-420

    [7]

    Mie G 1908 Ann. Phys. 330 377

    [8]

    Chu C M, Churchill S W 1955 J. Opt. Soc. Am. 45 958

    [9]

    Wiscombe W J 1980 Appl. Opt. 19 1505

    [10]

    Bohren C F, Huffman D R 2004 Absorption and Scattering of Light by Small Particles (Weinheim: Wiley-Vch Verlag GmbH Co. KGaA) pp130-154

    [11]

    Lee S C 1990 J. Appl. Phys. 68 4952

    [12]

    Kerker M 1969 The Scattering of Light and Other Electromagnetic Radiation (London: Academic Press) pp255-268

    [13]

    Bruno A B, Brauer J R 1988 J. Appl. Phys. 63 3200

    [14]

    Chandrasekhar S 1960 Radiative Transfer (New York:Dover Publications Inc.) pp393-399

    [15]

    Mores P M, Feshbach H 1953 Methods of Theoretical Physics (New York: McGraw-Hill Book Co.) pp1130-1131

    [16]

    Bechelany M, Brioude A, Cornu D, Ferro G, Miele P 2007 Adv. Funct. Mater. 17 939

    [17]

    Brnstrup G, Jahr N, Leiterer C, Cski A, Fritzsche W, Christiansen S 2010 ACS Nano 4 7113

    [18]

    Lopez F J, Hyun J K, Givan U, Kim I S, Holsteen A L, Lauhon L J 2012 Nano Lett. 12 2266

    [19]

    Grzela G, Hourlier D, Rivas J G 2012 Phys. Rev. B 86 045305

    [20]

    Hyde M W, Bogle A E, Havrilla M J 2013 Opt. Express 21 32327

  • [1]

    van de Hulst H C 1981 Light Scattering by Small Particles (Vol. 1) (New York: Dover) pp119-130

    [2]

    Zhang Q X, Li Y D, Deng X J, Zhang Y M 2011 Acta Phys. Sin. 60 084216 (in Chinese) [张启兴, 李耀东, 邓小玖, 张永明 2011 物理学报 60 084216]

    [3]

    Qian K Y, Ma J, Fu W, Luo Y 2012 Acta Phys. Sin. 61 204201 (in Chinese) [钱可元, 马骏, 付伟, 罗毅 2012 物理学报 61 204201]

    [4]

    Ou J, Jiang Y S, Shao Y W, Qu X S, Hua H Q, Wen D H 2013 Acta Phys. Sin. 62 114201 (in Chinese) [欧军, 江月松, 邵宇伟, 屈晓声, 华厚强, 闻东海 2013 物理学报 62 114201]

    [5]

    Jones R C 1945 Phys. Rev. 68 93

    [6]

    Stratton J A 1941 Electromagneic Theory (New York: McGraw-Hill Book Co.) pp349-420

    [7]

    Mie G 1908 Ann. Phys. 330 377

    [8]

    Chu C M, Churchill S W 1955 J. Opt. Soc. Am. 45 958

    [9]

    Wiscombe W J 1980 Appl. Opt. 19 1505

    [10]

    Bohren C F, Huffman D R 2004 Absorption and Scattering of Light by Small Particles (Weinheim: Wiley-Vch Verlag GmbH Co. KGaA) pp130-154

    [11]

    Lee S C 1990 J. Appl. Phys. 68 4952

    [12]

    Kerker M 1969 The Scattering of Light and Other Electromagnetic Radiation (London: Academic Press) pp255-268

    [13]

    Bruno A B, Brauer J R 1988 J. Appl. Phys. 63 3200

    [14]

    Chandrasekhar S 1960 Radiative Transfer (New York:Dover Publications Inc.) pp393-399

    [15]

    Mores P M, Feshbach H 1953 Methods of Theoretical Physics (New York: McGraw-Hill Book Co.) pp1130-1131

    [16]

    Bechelany M, Brioude A, Cornu D, Ferro G, Miele P 2007 Adv. Funct. Mater. 17 939

    [17]

    Brnstrup G, Jahr N, Leiterer C, Cski A, Fritzsche W, Christiansen S 2010 ACS Nano 4 7113

    [18]

    Lopez F J, Hyun J K, Givan U, Kim I S, Holsteen A L, Lauhon L J 2012 Nano Lett. 12 2266

    [19]

    Grzela G, Hourlier D, Rivas J G 2012 Phys. Rev. B 86 045305

    [20]

    Hyde M W, Bogle A E, Havrilla M J 2013 Opt. Express 21 32327

  • [1] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [2] 王清华, 张颖颖, 来建成, 李振华, 贺安之. Mie理论在生物组织散射特性分析中的应用. 物理学报, 2007, 56(2): 1203-1207. doi: 10.7498/aps.56.1203
    [3] 贺静波, 刘忠, 胡生亮. 基于海杂波散射特性的微弱信号检测方法. 物理学报, 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [4] 程晨, 史泽林, 崔生成, 徐青山. 改进的单次散射相函数解析表达式. 物理学报, 2017, 66(18): 180201. doi: 10.7498/aps.66.180201
    [5] 陈星, 夏云杰. 双模压缩真空态和纠缠相干态的一维势垒散射. 物理学报, 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [6] 赵太飞, 柯熙政. Monte Carlo方法模拟非直视紫外光散射覆盖范围. 物理学报, 2012, 61(11): 114208. doi: 10.7498/aps.61.114208
    [7] 王海华, 孙贤明. 两种按比例混合颗粒系的多次散射模拟. 物理学报, 2012, 61(15): 154204. doi: 10.7498/aps.61.154204
    [8] 张会云, 刘蒙, 尹贻恒, 吴志心, 申端龙, 张玉萍. 基于格林函数法研究金属线栅在太赫兹波段的散射特性. 物理学报, 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [9] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [10] 马艳, 林书玉, 鲜晓军. 次Bjerknes力作用下气泡的体积振动和散射声场. 物理学报, 2016, 65(1): 014301. doi: 10.7498/aps.65.014301
    [11] 白 璐, 吴振森, 陈 辉, 郭立新. 高斯波束入射下串粒子的散射问题. 物理学报, 2005, 54(5): 2025-2029. doi: 10.7498/aps.54.2025
    [12] 刘文军, 毛宏燕, 付国庆, 曲士良. 散射介质中多重散射太赫兹脉冲的时域统计特性. 物理学报, 2010, 59(2): 913-917. doi: 10.7498/aps.59.913
    [13] 刘丽想, 杜国浩, 胡 雯, 骆玉宇, 谢红兰, 陈 敏, 肖体乔. 利用定量相衬成像消除X射线同轴轮廓成像中散射的影响. 物理学报, 2006, 55(12): 6387-6394. doi: 10.7498/aps.55.6387
    [14] 李飞飞, 许京军, 刘思敏, 乔海军, 张光寅. c向切割LiNbO3∶Fe晶体中光折变光散射. 物理学报, 2001, 50(12): 2341-2344. doi: 10.7498/aps.50.2341
    [15] 殷澄, 许田, 陈秉岩, 韩庆邦. 金属粒子阵列共振的偏振特性. 物理学报, 2015, 64(16): 164202. doi: 10.7498/aps.64.164202
    [16] 孙良奎, 于哲峰, 黄洁. 基于超材料的平板二维定向传热结构设计. 物理学报, 2015, 64(22): 224401. doi: 10.7498/aps.64.224401
    [17] 王海龙, 吴 群, 李乐伟, 吴 健, 孟繁义. 垂直电偶极子在球外侧电磁场的闭合解及验证. 物理学报, 2007, 56(1): 195-200. doi: 10.7498/aps.56.195
    [18] 付方正, 李明. 蒙特卡罗法计算无序激光器的阈值. 物理学报, 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [19] 李永宏, 刘福生, 马海云, 程小理, 马小娟, 孙燕云, 张明建, 薛学东. 动态荷载下石英玻璃的透光性及损伤演化研究. 物理学报, 2010, 59(3): 2104-2108. doi: 10.7498/aps.59.2104
    [20] 王红霞, 周战荣, 张清华, 马进, 刘代志. 纳米碳纤维红外消光数值计算. 物理学报, 2010, 59(9): 6111-6117. doi: 10.7498/aps.59.6111
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1148
  • PDF下载量:  286
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-12
  • 修回日期:  2017-02-04
  • 刊出日期:  2017-05-05

微纳粒子光学散射分析

  • 1. 中国科学院强磁场科学中心, 合肥 230031;
  • 2. 中国科学技术大学, 合肥 230026
  • 通信作者: 付成花, fuchenghua2014@hmfl.ac.cn

摘要: 为实现利用光学方式对微纳尺度粒子性质的研究,探讨了亚微米线及亚微米球对光电磁波的散射效应.微纳米尺度粒子的光学散射,散射粒子尺寸与入射光波长尺寸可满足米氏(Mie)散射条件.利用Matlab数值模拟的方式,将分析结果以模拟图的形式清晰地展现出来.满足尺寸条件的层状粒子以及任意多个散射粒子存在时对电磁波的散射都可采用Mie散射分析方法,并且针对多粒子散射,分析了散射体位于不同位置时对散射造成的影响.通过分析光学散射光场相关的微分散射截面及近场散射电磁场分布,可得出散射光场随散射角度的变化趋势,以及散射光场受各类因素的影响,包括入射光偏振态、散射粒子尺寸、散射粒子结构及粒子构成层数、散射粒子数量等的影响,也包括一些隐含因素对散射光场的影响,如散射粒子与周围介质的相对折射率.本文的科学意义体现在:与入射光波长尺寸可比的亚微米尺度的粒子,可用作传感器,对于其位移的探测可通过光学方式来实现,而由于粒子本身特性对散射光的影响具有一定的参考价值,从而使通过光学方式对机械位移的读出具有更高准确度.研究结果对于光学方式探测亚微米线机械振动具有指导意义.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回