-
利用Lagrange方程得到了次Bjerknes力作用下气泡的体积振动方程, 并探讨了次Bjerknes力作用下不同参数对气泡体积振动振幅和振动初相位的影响, 研究了振动初相位差为和0的气泡对在液体中形成的散射声场特征. 结果表明: 次Bjerknes作用力下, 相邻气泡半径、气泡间距、多方指数均能影响气泡的体积振动振幅, 气泡对的均衡半径、气泡间距和驱动频率则对气泡振动初相位产生明显影响; 相距很近、相位相差为的两个气泡的散射声压与气泡体积振动振幅、气泡间距、驱动频率和振动初相位有关, 随声场距离成反比减小, 与声场位置有关, 其平均散射声功率是单个孤立气泡的1/6 (kd12)2; 半径相同、相距很近、相位相同的两个气泡的散射声压与气泡振动初相位、体积振动振幅、气泡间距、驱动频率有关, 随声场距离成反比减小, 其平均散射声功率是单个孤立气泡的4倍.
-
关键词:
- 次Bjerknes力 /
- 体积振动振幅 /
- 振动初相位 /
- 散射
[1] Carstensen E L, Foldy L L 1947 J. Acoust. Soc. Am. 19 481
[2] Devin C J R 1959 J. Acoust. Soc. Am. 31 1654
[3] Himmelblau D M 1964 Chem. Rev. 64 527
[4] Kapodistrias G, Dahl P H 2001 J. Acoust. Soc. Am. 110 1271
[5] Kohanvosky A A 2004 Am. J. Phys. 72 258
[6] Cai L W 2004 J. Acoust. Soc. Am. 115 986
[7] Kapodistrias G, Dahl P H 2000 J. Acoust. Soc. Am. 107 3006
[8] Farmer D M, Deane G B 2001 IEEE J. Oceanic Eng. 26 113
[9] Flynn H G 1975 J. Acoust. Soc. Am. 57 1379
[10] Qian Z W 1981 Acta Phys. Sin. 30 442 (in Chinese) [钱祖文 1981 物理学报 30 442]
[11] Wang Y, Lin S Y 2014 Acta Phys. Sin. 63 034301 (in Chinese) [王勇, 林书玉 2014 物理学报 63 034301]
[12] Wang C H, Cheng J C 2014 Acta Phys. Sin. 63 134301 (in Chinese) [王成会, 程建春 2014 物理学报 63 134301]
[13] Wu J, Fan T B 2014 Chin. Phys. B 23 104302
[14] Wang L, Tu J 2014 Chin. Phys. B 23 124302
[15] Ye Z 1996 J. Acoust. Soc. Am. 100 2011
[16] Sadighi-Bonabi R, Rezaee N, Ebrahimi H, Mirheydari M 2010 Phys. Rev. E 82 016316
[17] Gaunaurd G C, Huang H S 2000 J. Acoust. Soc. Am. 107 95
[18] Kapodistrias G, Dahl P H 2012 J. Acoust. Soc. Am. 131 4243
[19] Church C C 1995 J. Acoust. Soc. Am. 97 1510
[20] Zabolotskaya E A 1984 Sov. Phys. Acoust 30 365
[21] Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309
[22] Yuan L, Katz J 2013 Phys. Fluids 25 073301
[23] Alibakhshi M A 2011 J. Acoust. Soc. Am. 130 3321
[24] Mettin R, Akhatov I, Parlitz U, Oho C D 1997 Phys. Rev. E 56 2924
-
[1] Carstensen E L, Foldy L L 1947 J. Acoust. Soc. Am. 19 481
[2] Devin C J R 1959 J. Acoust. Soc. Am. 31 1654
[3] Himmelblau D M 1964 Chem. Rev. 64 527
[4] Kapodistrias G, Dahl P H 2001 J. Acoust. Soc. Am. 110 1271
[5] Kohanvosky A A 2004 Am. J. Phys. 72 258
[6] Cai L W 2004 J. Acoust. Soc. Am. 115 986
[7] Kapodistrias G, Dahl P H 2000 J. Acoust. Soc. Am. 107 3006
[8] Farmer D M, Deane G B 2001 IEEE J. Oceanic Eng. 26 113
[9] Flynn H G 1975 J. Acoust. Soc. Am. 57 1379
[10] Qian Z W 1981 Acta Phys. Sin. 30 442 (in Chinese) [钱祖文 1981 物理学报 30 442]
[11] Wang Y, Lin S Y 2014 Acta Phys. Sin. 63 034301 (in Chinese) [王勇, 林书玉 2014 物理学报 63 034301]
[12] Wang C H, Cheng J C 2014 Acta Phys. Sin. 63 134301 (in Chinese) [王成会, 程建春 2014 物理学报 63 134301]
[13] Wu J, Fan T B 2014 Chin. Phys. B 23 104302
[14] Wang L, Tu J 2014 Chin. Phys. B 23 124302
[15] Ye Z 1996 J. Acoust. Soc. Am. 100 2011
[16] Sadighi-Bonabi R, Rezaee N, Ebrahimi H, Mirheydari M 2010 Phys. Rev. E 82 016316
[17] Gaunaurd G C, Huang H S 2000 J. Acoust. Soc. Am. 107 95
[18] Kapodistrias G, Dahl P H 2012 J. Acoust. Soc. Am. 131 4243
[19] Church C C 1995 J. Acoust. Soc. Am. 97 1510
[20] Zabolotskaya E A 1984 Sov. Phys. Acoust 30 365
[21] Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309
[22] Yuan L, Katz J 2013 Phys. Fluids 25 073301
[23] Alibakhshi M A 2011 J. Acoust. Soc. Am. 130 3321
[24] Mettin R, Akhatov I, Parlitz U, Oho C D 1997 Phys. Rev. E 56 2924
引用本文: |
Citation: |
计量
- 文章访问数: 1599
- PDF下载量: 185
- 被引次数: 0