搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属玻璃的热塑性成型

马将 杨灿 龚峰 伍晓宇 梁雄

金属玻璃的热塑性成型

马将, 杨灿, 龚峰, 伍晓宇, 梁雄
PDF
导出引用
  • 金属玻璃在其过冷液相区内表现出随着温度升高黏度逐渐降低的特性,因此可以对其进行热塑性加工.该性质颠覆了传统金属的加工成型方式,使得其在远低于传统金属材料加工的温度和应力作用下可以按照人们的要求进行成型.因此,一些具有低玻璃转变温度的金属玻璃又被称作金属塑料.另外,由于金属玻璃是一种无序结构材料,不存在位错、晶界等晶体缺陷,且热膨胀系数小,在热塑性成型中具有优异的尺寸精度,因此被认为是理想的微成型材料,有广阔的应用前景.本文系统介绍了金属玻璃的热塑性成型性质及其应用,从热塑性成型的基本概念出发,阐述了金属玻璃热塑性成型能力的评估指标、热塑性成型技术、热塑性微成型及其理论、热塑性微成型的应用等,对认识金属玻璃的热塑性及扩展其应用有重要的意义.
      通信作者: 马将, majiang@szu.edu.cn;xliang@szu.edu.cn ; 梁雄, majiang@szu.edu.cn;xliang@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51501116,51605304,51575360)、广东省自然科学基金博士启动项目(批准号:2016A030310036,2016A030310043)、中国博士后科学基金(批准号:2016M601423)和深圳大学青年教师科研启动项目(批准号:2017034)资助的课题.
    [1]

    Klement W, Willens R H, Duwez P 1960 Nature 187 869

    [2]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nat. Mater. 2 661

    [3]

    Wang W H 2011 Physics 40 701 (in Chinese) [汪卫华 2011 物理 40 701]

    [4]

    Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620

    [5]

    Sekol R C, Kumar G, Carmo M, Gittleson F, Dyck N H, Mukherjee S, Schroers J, Taylor A D 2013 Small 9 2081

    [6]

    Kumar G, Schroers J 2008 Appl. Phys. Lett. 92 031901

    [7]

    Saotome Y, Imai K, Shioda S, Shimizu S, Zhang T, Inoue A 2002 Intermetallics 10 1241

    [8]

    Ma J, Zhang X, Wang W H 2012 J. Appl. Phys. 112 024506

    [9]

    Ma J, Yi J, Zhao D Q, Pan M X, Wang W H 2012 J. Appl. Phys. 112 064505

    [10]

    Telford M 2004 Mater. Today 7 36

    [11]

    Chu J, Wijaya H, Wu C, Tsai T, Wei C, Nieh T, Wadsworth J 2007 Appl. Phys. Lett. 90 034101

    [12]

    Schroers J 2005 Jom-Us 57 35

    [13]

    Zhang B 2006 Ph. D. Dissertation (Beijing: Institute of Physics Chinese Academy of Sciences) (in Chinese) [张博2006 博士学位论文(北京: 中国科学院物理研究所)]

    [14]

    Diego J, Clavaguera-Mora M, Clavaguera N 1994 Mater. Sci. Eng. A 179 526

    [15]

    Kim Y, Busch R, Johnson W, Rulison A, Rhim W 1996 Appl. Phys. Lett. 68 1057

    [16]

    Schroers J, Johnson W L, Busch R 2000 Appl. Phys. Lett. 77 1158

    [17]

    Hays C, Schroers J, Johnson W, Rathz T, Hyers R, Rogers J, Robinson M 2001 Appl. Phys. Lett. 79 1605

    [18]

    Schroers J, Wu Y, Busch R, Johnson W 2001 Acta Mater. 49 2773

    [19]

    Schroers J, Johnson W L 2000 J. Appl. Phys. 88 44

    [20]

    Schroers J, Johnson W L 2000 Mater. Trans. JIM 41 1530

    [21]

    Mukherjee S, Zhou Z, Schroers J, Johnson W, Rhim W 2004 Appl. Phys. Lett. 84 5010

    [22]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [23]

    Schroers J 2010 Adv. Mater. 22 1566

    [24]

    Busch R, Bakke E, Johnson W 1998 Acta Mater. 46 4725

    [25]

    Fan G, Fecht H J, Lavernia E 2004 Appl. Phys. Lett. 84 487

    [26]

    Waniuk T, Schroers J, Johnson W L 2003 Phys. Rev. B 67 184203

    [27]

    Legg B A, Schroers J, Busch R 2007 Acta Mater. 55 1109

    [28]

    Wiest A, Duan G, Demetriou M D, Wiest L A, Peck A, Kaltenboeck G, Wiest B, Johnson W L 2008 Acta Mater. 56 2625

    [29]

    Lu Z P, Liu C T, Thompson J R, Porter W D 2004 Phys. Rev. Lett. 92 245503

    [30]

    Waniuk T A, Schroers J, Johnson W L 2001 Appl. Phys. Lett. 78 1213

    [31]

    Lu I R, Wilde G, Görler G P, Willnecker R 1999 J. Non-Cryst. Solids 250 577

    [32]

    Schroers J, Johnson W L 2004 Appl. Phys. Lett. 84 3666

    [33]

    Schroers J, Lohwongwatana B, Johnson W L, Peker A 2005 Appl. Phys. Lett. 87 061912

    [34]

    Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200

    [35]

    Ma J, Chan K C, Xia L, Chen S H, Wu F F, Li W H, Wang W H 2013 Mater. Sci. Eng. A 587 240

    [36]

    Wiest A, Harmon J S, Demetriou M D, Conner R D, Johnson W L 2009 Scripta Mater. 60 160

    [37]

    Duan G, Wiest A, Lind M L, Li J, Rhim W K, Johnson W L 2007 Adv. Mater. 19 4272

    [38]

    Takagi M, Kawamura Y, Imura T, Nishigaki J, Saka H 1992 J. Mater. Sci. 27 817

    [39]

    Kato A, Suganuma T, Horikiri H, Kawamura Y, Inoue A, Masumoto T 1994 Mater. Sci. Eng. A 179 112

    [40]

    Kawamura Y, Kato H, Inoue A, Masumoto T 1995 Appl. Phys. Lett. 67 2008

    [41]

    Kawamura Y, Kato H, Inoue A, Masumoto T 1996 Mater. Sci. Eng. A 219 39

    [42]

    Kawamura Y, Shibata T, Inoue A, Masumoto T 1998 Acta Mater. 46 253

    [43]

    Sordelet D, Rozhkova E, Huang P, Wheelock P, Besser M, Kramer M, Calvo-Dahlborg M, Dahlborg U 2002 J. Mater. Res. 17 186

    [44]

    Lee S Y, Kim T S, Lee J K, Kim H J, Kim D, Bae J 2006 Intermetallics 14 1000

    [45]

    Martinez R, Kumar G, Schroers J 2008 Scripta Mater. 59 187

    [46]

    Lee M H, Park J S, Kim J H, Kim W T, Kim D H 2005 Mater. Lett. 59 1042

    [47]

    Kim H J, Lee J K, Kim T S, Bae J C, Park E S, Huh M Y, Kim D H 2007 Mater. Sci. Eng. A 449 929

    [48]

    Johnson W L 2011 Science 332 828

    [49]

    Kaltenboeck G, Demetriou M D, Scott, Johnson W L 2016 Nat. Commun. 7 10576

    [50]

    Fairbanks H V 1974 Ultrasonics 12 22

    [51]

    Ma J 2015 Sci. Rep.-UK 5

    [52]

    Saotome Y, Itoh K, Zhang T, Inoue A 2001 Scripta Mater. 44 1541

    [53]

    Saotome Y, Miwa S, Zhang T, Inoue A 2001 J. Mater. Process. Technol. 113 64

    [54]

    Saotome Y, Noguchi Y, Zhang T, Inoue A 2004 Mater. Sci. Engineer. A 375 389

    [55]

    Saotome Y, Fukuda Y, Yamaguchi I, Inoue A 2007 J. Alloy. Compd. 434 97

    [56]

    Saotome Y, Iwazaki H 2000 Microsyst. Technol. 6 126

    [57]

    Schroers J, Nguyen T, O'Keeffe S, Desai A 2007 Mater. Sci. Eng. A 449 898

    [58]

    Bardt J A, Bourne G R, Schmitz T L, Ziegert J C, Sawyer W G 2007 J. Mater. Res. 22 339

    [59]

    Huang J, Chu J, Jang J 2009 Intermetallics 17 973

    [60]

    Pan C, Wu T, Chang Y, Huang J 2008 J. Micromech. Microeng. 18 025010

    [61]

    Schroers J, Kumar G, Hodges T M, Chan S, Kyriakides T R 2009 Jom-Us 61 21

    [62]

    Kumar G, Tang H X, Schroers J 2009 Nature 457 868

    [63]

    Kumar G, Desai A, Schroers J 2011 Adv. Mater. 23 461

    [64]

    Schroers J, Pham Q, Desai A 2007 J. Microelectromech. S. 16 240

    [65]

    Kundu K P, Cohen M I 2008 Fluid Mechanics (4th Ed.) (Waltham: Academic Press)

    [66]

    Li N, Xia T, Heng L, Liu L 2013 Appl. Phys. Lett. 102 251603

    [67]

    Zheng Z Z, Cheng J, Wang X Y, Li J J 2009 China Mech. Eng. 20 2510 (in Chinese) [郑志镇, 成蛟, 王新云, 李建军 2009 中国机械工程 20 2510]

    [68]

    Wang D 2010 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [王栋 2010 博士学位论文 (武汉: 华中科技大学)]

    [69]

    Liu X, Shao Y, Han Z, Yao K 2014 Sci. Bull. 60 629

    [70]

    Zhang Z, Xie J 2006 Mater. Sci. Eng. A 433 323

    [71]

    Ma Z, Dong X, Su H, Wang R 2012 Rare Metal Mat. Eng. 41 1706

    [72]

    Guo X L 2008 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [郭晓琳 2008 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [73]

    Cheng M, Zhang S H 2007 Mater. Rev. 21 4 (in Chinese) [程明, 张士宏2007 材料导报 21 4]

    [74]

    Wang G 2005 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [王刚 2005 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [75]

    Rötting O, Röpke W, Becker H, Gärtner C 2002 Microsyst. Technol. 8 32

    [76]

    Worgull M, Heckele M, Schomburg W 2005 Microsys. Technol. 12 110

    [77]

    Torre F D, Spätig P, Schäublin R, Victoria M 2005 Acta Mater. 53 2337

    [78]

    Worgull M 2009 Hot Embossing: Theory and Technology of Microreplication (Vol. 1) (Oxford: William Andrew) p62

    [79]

    Fu G, Tor S B, Loh N H, Hardt D E 2010 J. Micromech. Microeng. 20 085019

    [80]

    Zhang N, Chu J S, Byrne C J, Browne D J, Gilchrist M D 2012 J. Micromech. Microeng. 22 065019

    [81]

    Aizenberg J, Fratzl P 2009 Adv. Mater. 21 387

    [82]

    Yao X, Song Y, Jiang L 2011 Adv. Mater. 23 719

    [83]

    Roach P, Shirtcliffe N J, Newton M I 2008 Soft Matter 4 224

    [84]

    Zhang X, Shi F, Niu J, Jiang Y, Wang Z 2008 J. Mater. Chem. 18 621

    [85]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988

    [86]

    Cassie A, Baxter S 1944 Trans. Faraday Soc. 40 546

    [87]

    Liu K, Jiang L 2011 Nanoscale 3 825

    [88]

    Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras R H 2011 Adv. Mater. 23 673

    [89]

    Liu K, Li Z, Wang W, Jiang L 2011 Appl. Phys. Lett. 99 261905

    [90]

    Larmour I A, Saunders G C, Bell S E 2010 ACS Appl. Mater. Inter. 2 2703

    [91]

    Ma J, Zhang X Y, Wang D P 2014 Appl. Phys. Lett. 104 173701

  • [1]

    Klement W, Willens R H, Duwez P 1960 Nature 187 869

    [2]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nat. Mater. 2 661

    [3]

    Wang W H 2011 Physics 40 701 (in Chinese) [汪卫华 2011 物理 40 701]

    [4]

    Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620

    [5]

    Sekol R C, Kumar G, Carmo M, Gittleson F, Dyck N H, Mukherjee S, Schroers J, Taylor A D 2013 Small 9 2081

    [6]

    Kumar G, Schroers J 2008 Appl. Phys. Lett. 92 031901

    [7]

    Saotome Y, Imai K, Shioda S, Shimizu S, Zhang T, Inoue A 2002 Intermetallics 10 1241

    [8]

    Ma J, Zhang X, Wang W H 2012 J. Appl. Phys. 112 024506

    [9]

    Ma J, Yi J, Zhao D Q, Pan M X, Wang W H 2012 J. Appl. Phys. 112 064505

    [10]

    Telford M 2004 Mater. Today 7 36

    [11]

    Chu J, Wijaya H, Wu C, Tsai T, Wei C, Nieh T, Wadsworth J 2007 Appl. Phys. Lett. 90 034101

    [12]

    Schroers J 2005 Jom-Us 57 35

    [13]

    Zhang B 2006 Ph. D. Dissertation (Beijing: Institute of Physics Chinese Academy of Sciences) (in Chinese) [张博2006 博士学位论文(北京: 中国科学院物理研究所)]

    [14]

    Diego J, Clavaguera-Mora M, Clavaguera N 1994 Mater. Sci. Eng. A 179 526

    [15]

    Kim Y, Busch R, Johnson W, Rulison A, Rhim W 1996 Appl. Phys. Lett. 68 1057

    [16]

    Schroers J, Johnson W L, Busch R 2000 Appl. Phys. Lett. 77 1158

    [17]

    Hays C, Schroers J, Johnson W, Rathz T, Hyers R, Rogers J, Robinson M 2001 Appl. Phys. Lett. 79 1605

    [18]

    Schroers J, Wu Y, Busch R, Johnson W 2001 Acta Mater. 49 2773

    [19]

    Schroers J, Johnson W L 2000 J. Appl. Phys. 88 44

    [20]

    Schroers J, Johnson W L 2000 Mater. Trans. JIM 41 1530

    [21]

    Mukherjee S, Zhou Z, Schroers J, Johnson W, Rhim W 2004 Appl. Phys. Lett. 84 5010

    [22]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [23]

    Schroers J 2010 Adv. Mater. 22 1566

    [24]

    Busch R, Bakke E, Johnson W 1998 Acta Mater. 46 4725

    [25]

    Fan G, Fecht H J, Lavernia E 2004 Appl. Phys. Lett. 84 487

    [26]

    Waniuk T, Schroers J, Johnson W L 2003 Phys. Rev. B 67 184203

    [27]

    Legg B A, Schroers J, Busch R 2007 Acta Mater. 55 1109

    [28]

    Wiest A, Duan G, Demetriou M D, Wiest L A, Peck A, Kaltenboeck G, Wiest B, Johnson W L 2008 Acta Mater. 56 2625

    [29]

    Lu Z P, Liu C T, Thompson J R, Porter W D 2004 Phys. Rev. Lett. 92 245503

    [30]

    Waniuk T A, Schroers J, Johnson W L 2001 Appl. Phys. Lett. 78 1213

    [31]

    Lu I R, Wilde G, Görler G P, Willnecker R 1999 J. Non-Cryst. Solids 250 577

    [32]

    Schroers J, Johnson W L 2004 Appl. Phys. Lett. 84 3666

    [33]

    Schroers J, Lohwongwatana B, Johnson W L, Peker A 2005 Appl. Phys. Lett. 87 061912

    [34]

    Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200

    [35]

    Ma J, Chan K C, Xia L, Chen S H, Wu F F, Li W H, Wang W H 2013 Mater. Sci. Eng. A 587 240

    [36]

    Wiest A, Harmon J S, Demetriou M D, Conner R D, Johnson W L 2009 Scripta Mater. 60 160

    [37]

    Duan G, Wiest A, Lind M L, Li J, Rhim W K, Johnson W L 2007 Adv. Mater. 19 4272

    [38]

    Takagi M, Kawamura Y, Imura T, Nishigaki J, Saka H 1992 J. Mater. Sci. 27 817

    [39]

    Kato A, Suganuma T, Horikiri H, Kawamura Y, Inoue A, Masumoto T 1994 Mater. Sci. Eng. A 179 112

    [40]

    Kawamura Y, Kato H, Inoue A, Masumoto T 1995 Appl. Phys. Lett. 67 2008

    [41]

    Kawamura Y, Kato H, Inoue A, Masumoto T 1996 Mater. Sci. Eng. A 219 39

    [42]

    Kawamura Y, Shibata T, Inoue A, Masumoto T 1998 Acta Mater. 46 253

    [43]

    Sordelet D, Rozhkova E, Huang P, Wheelock P, Besser M, Kramer M, Calvo-Dahlborg M, Dahlborg U 2002 J. Mater. Res. 17 186

    [44]

    Lee S Y, Kim T S, Lee J K, Kim H J, Kim D, Bae J 2006 Intermetallics 14 1000

    [45]

    Martinez R, Kumar G, Schroers J 2008 Scripta Mater. 59 187

    [46]

    Lee M H, Park J S, Kim J H, Kim W T, Kim D H 2005 Mater. Lett. 59 1042

    [47]

    Kim H J, Lee J K, Kim T S, Bae J C, Park E S, Huh M Y, Kim D H 2007 Mater. Sci. Eng. A 449 929

    [48]

    Johnson W L 2011 Science 332 828

    [49]

    Kaltenboeck G, Demetriou M D, Scott, Johnson W L 2016 Nat. Commun. 7 10576

    [50]

    Fairbanks H V 1974 Ultrasonics 12 22

    [51]

    Ma J 2015 Sci. Rep.-UK 5

    [52]

    Saotome Y, Itoh K, Zhang T, Inoue A 2001 Scripta Mater. 44 1541

    [53]

    Saotome Y, Miwa S, Zhang T, Inoue A 2001 J. Mater. Process. Technol. 113 64

    [54]

    Saotome Y, Noguchi Y, Zhang T, Inoue A 2004 Mater. Sci. Engineer. A 375 389

    [55]

    Saotome Y, Fukuda Y, Yamaguchi I, Inoue A 2007 J. Alloy. Compd. 434 97

    [56]

    Saotome Y, Iwazaki H 2000 Microsyst. Technol. 6 126

    [57]

    Schroers J, Nguyen T, O'Keeffe S, Desai A 2007 Mater. Sci. Eng. A 449 898

    [58]

    Bardt J A, Bourne G R, Schmitz T L, Ziegert J C, Sawyer W G 2007 J. Mater. Res. 22 339

    [59]

    Huang J, Chu J, Jang J 2009 Intermetallics 17 973

    [60]

    Pan C, Wu T, Chang Y, Huang J 2008 J. Micromech. Microeng. 18 025010

    [61]

    Schroers J, Kumar G, Hodges T M, Chan S, Kyriakides T R 2009 Jom-Us 61 21

    [62]

    Kumar G, Tang H X, Schroers J 2009 Nature 457 868

    [63]

    Kumar G, Desai A, Schroers J 2011 Adv. Mater. 23 461

    [64]

    Schroers J, Pham Q, Desai A 2007 J. Microelectromech. S. 16 240

    [65]

    Kundu K P, Cohen M I 2008 Fluid Mechanics (4th Ed.) (Waltham: Academic Press)

    [66]

    Li N, Xia T, Heng L, Liu L 2013 Appl. Phys. Lett. 102 251603

    [67]

    Zheng Z Z, Cheng J, Wang X Y, Li J J 2009 China Mech. Eng. 20 2510 (in Chinese) [郑志镇, 成蛟, 王新云, 李建军 2009 中国机械工程 20 2510]

    [68]

    Wang D 2010 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [王栋 2010 博士学位论文 (武汉: 华中科技大学)]

    [69]

    Liu X, Shao Y, Han Z, Yao K 2014 Sci. Bull. 60 629

    [70]

    Zhang Z, Xie J 2006 Mater. Sci. Eng. A 433 323

    [71]

    Ma Z, Dong X, Su H, Wang R 2012 Rare Metal Mat. Eng. 41 1706

    [72]

    Guo X L 2008 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [郭晓琳 2008 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [73]

    Cheng M, Zhang S H 2007 Mater. Rev. 21 4 (in Chinese) [程明, 张士宏2007 材料导报 21 4]

    [74]

    Wang G 2005 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [王刚 2005 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [75]

    Rötting O, Röpke W, Becker H, Gärtner C 2002 Microsyst. Technol. 8 32

    [76]

    Worgull M, Heckele M, Schomburg W 2005 Microsys. Technol. 12 110

    [77]

    Torre F D, Spätig P, Schäublin R, Victoria M 2005 Acta Mater. 53 2337

    [78]

    Worgull M 2009 Hot Embossing: Theory and Technology of Microreplication (Vol. 1) (Oxford: William Andrew) p62

    [79]

    Fu G, Tor S B, Loh N H, Hardt D E 2010 J. Micromech. Microeng. 20 085019

    [80]

    Zhang N, Chu J S, Byrne C J, Browne D J, Gilchrist M D 2012 J. Micromech. Microeng. 22 065019

    [81]

    Aizenberg J, Fratzl P 2009 Adv. Mater. 21 387

    [82]

    Yao X, Song Y, Jiang L 2011 Adv. Mater. 23 719

    [83]

    Roach P, Shirtcliffe N J, Newton M I 2008 Soft Matter 4 224

    [84]

    Zhang X, Shi F, Niu J, Jiang Y, Wang Z 2008 J. Mater. Chem. 18 621

    [85]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988

    [86]

    Cassie A, Baxter S 1944 Trans. Faraday Soc. 40 546

    [87]

    Liu K, Jiang L 2011 Nanoscale 3 825

    [88]

    Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras R H 2011 Adv. Mater. 23 673

    [89]

    Liu K, Li Z, Wang W, Jiang L 2011 Appl. Phys. Lett. 99 261905

    [90]

    Larmour I A, Saunders G C, Bell S E 2010 ACS Appl. Mater. Inter. 2 2703

    [91]

    Ma J, Zhang X Y, Wang D P 2014 Appl. Phys. Lett. 104 173701

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1501
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-02
  • 修回日期:  2017-06-15
  • 刊出日期:  2017-09-05

金属玻璃的热塑性成型

    基金项目: 

    国家自然科学基金(批准号:51501116,51605304,51575360)、广东省自然科学基金博士启动项目(批准号:2016A030310036,2016A030310043)、中国博士后科学基金(批准号:2016M601423)和深圳大学青年教师科研启动项目(批准号:2017034)资助的课题.

摘要: 金属玻璃在其过冷液相区内表现出随着温度升高黏度逐渐降低的特性,因此可以对其进行热塑性加工.该性质颠覆了传统金属的加工成型方式,使得其在远低于传统金属材料加工的温度和应力作用下可以按照人们的要求进行成型.因此,一些具有低玻璃转变温度的金属玻璃又被称作金属塑料.另外,由于金属玻璃是一种无序结构材料,不存在位错、晶界等晶体缺陷,且热膨胀系数小,在热塑性成型中具有优异的尺寸精度,因此被认为是理想的微成型材料,有广阔的应用前景.本文系统介绍了金属玻璃的热塑性成型性质及其应用,从热塑性成型的基本概念出发,阐述了金属玻璃热塑性成型能力的评估指标、热塑性成型技术、热塑性微成型及其理论、热塑性微成型的应用等,对认识金属玻璃的热塑性及扩展其应用有重要的意义.

English Abstract

参考文献 (91)

目录

    /

    返回文章
    返回