搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铯原子里德伯态精细结构测量

裴栋梁 何军 王杰英 王家超 王军民

铯原子里德伯态精细结构测量

裴栋梁, 何军, 王杰英, 王家超, 王军民
PDF
导出引用
导出核心图
  • 里德伯态光谱是测量里德伯态能级结构和中性原子间相互作用的常用技术手段,特别是高精度的里德伯光谱,可以测量室温原子气室中由偶极相互作用等导致的原子能级频移.在实验中利用反向的852 nm激光和509 nm激光实现了室温原子气室中铯原子6S1/26P3/257S (D)跃迁的级联双光子激发,实现了里德伯态原子的制备.基于阶梯型电磁诱导透明获得了铯原子里德伯态的高分辨光谱.实验中,基于速度选择的射频边带调制技术,对光谱信号进行了频率标定,测量了铯原子里德伯态57D3/2和57D5/2的精细分裂,分裂间隔为(354.72.5) MHz,与理论计算结果基本一致.速度选择的射频调制光谱可以实现里德伯态原子的能级分裂测量,其测量精度对于单光子跃迁的绝对激光频率不敏感;实验中影响57D3/2和57D5/2精细分裂间隔测量精度的主要因素是功率加宽导致的电磁感应透明信号的展宽和509 nm激光频率扫描的非线性.
      通信作者: 何军, hejun@sxu.edu.cn;wwjjmm@sxu.edu.cn ; 王军民, hejun@sxu.edu.cn;wwjjmm@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61475091,61227902)、国家重点研发计划(批准号:2017YFA0304502)和山西省高等学校科技创新项目(批准号:2017101)资助的课题.
    [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge:Cambridge University Press) p1

    [2]

    Sedlacek J A, Schwettmann A, Kubler H, Low R, Pfau T, Shaffer J P 2012 Nature Phys. 8 819

    [3]

    Bason M G, Tanasittikosol M T, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015

    [4]

    Barredo D, Kubler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002

    [5]

    Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017

    [6]

    Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832

    [7]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603

    [8]

    Dudin Y O, Kuzmich A 2012 Science 336 887

    [9]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001

    [10]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57

    [11]

    Saffman M, Walker T G, Mlmer K 2010 Rev. Mod. Phys. 82 2313

    [12]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [13]

    Dudin Y O, Kuzmich A 2012 Science 336 887

    [14]

    Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Ct R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 6

    [15]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [16]

    Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S, Weatherill K J 2012 Opt. Lett. 37 3858

    [17]

    Harris S E 1989 Phys. Rev. Lett. 62 1033

    [18]

    Li Y Q, Xiao M 1995 Phys. Rev. A 51 4959

    [19]

    Fano U 1961 Phys. Rev. 124 1866

    [20]

    Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821

    [21]

    Kbler H, Shaffer J P, Baluktsian T, Lw R, Pfau T 2010 Nature Photon. 4 112

    [22]

    Huber B, Baluktsian T, Schlagmuller M, Kolle A, Kbler H, Lw R, Pfau T 2011 Phys. Rev. Lett. 107 243001

    [23]

    Xu W, DeMarco B 2016 Phys. Rev. A 93 011801

    [24]

    Bao S X, Zhang H, Zhou J, Zhang L J, Zhao J M, Xiao L T, Jia S T 2016 Phys. Rev. A 94 043822

    [25]

    Li G, Li S K, Wang X C, Zhang P F, Zhang T C 2017 Appl. Opt. 56 55

    [26]

    Black E D 2001 Am. J. Phys. 69 79

    [27]

    Weber K H, Sansonetti C J 1987 Phys. Rev. A 35 4650

    [28]

    Goy P, Raimond J M, Vitrant G, Haroche S 1982 Phys. Rev. A 26 2733

  • [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge:Cambridge University Press) p1

    [2]

    Sedlacek J A, Schwettmann A, Kubler H, Low R, Pfau T, Shaffer J P 2012 Nature Phys. 8 819

    [3]

    Bason M G, Tanasittikosol M T, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015

    [4]

    Barredo D, Kubler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002

    [5]

    Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017

    [6]

    Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832

    [7]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603

    [8]

    Dudin Y O, Kuzmich A 2012 Science 336 887

    [9]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001

    [10]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57

    [11]

    Saffman M, Walker T G, Mlmer K 2010 Rev. Mod. Phys. 82 2313

    [12]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [13]

    Dudin Y O, Kuzmich A 2012 Science 336 887

    [14]

    Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, Ct R, Eyler E E, Gould P L 2004 Phys. Rev. Lett. 93 6

    [15]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [16]

    Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S, Weatherill K J 2012 Opt. Lett. 37 3858

    [17]

    Harris S E 1989 Phys. Rev. Lett. 62 1033

    [18]

    Li Y Q, Xiao M 1995 Phys. Rev. A 51 4959

    [19]

    Fano U 1961 Phys. Rev. 124 1866

    [20]

    Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821

    [21]

    Kbler H, Shaffer J P, Baluktsian T, Lw R, Pfau T 2010 Nature Photon. 4 112

    [22]

    Huber B, Baluktsian T, Schlagmuller M, Kolle A, Kbler H, Lw R, Pfau T 2011 Phys. Rev. Lett. 107 243001

    [23]

    Xu W, DeMarco B 2016 Phys. Rev. A 93 011801

    [24]

    Bao S X, Zhang H, Zhou J, Zhang L J, Zhao J M, Xiao L T, Jia S T 2016 Phys. Rev. A 94 043822

    [25]

    Li G, Li S K, Wang X C, Zhang P F, Zhang T C 2017 Appl. Opt. 56 55

    [26]

    Black E D 2001 Am. J. Phys. 69 79

    [27]

    Weber K H, Sansonetti C J 1987 Phys. Rev. A 35 4650

    [28]

    Goy P, Raimond J M, Vitrant G, Haroche S 1982 Phys. Rev. A 26 2733

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1384
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-20
  • 修回日期:  2017-07-06
  • 刊出日期:  2017-10-05

铯原子里德伯态精细结构测量

    基金项目: 

    国家自然科学基金(批准号:61475091,61227902)、国家重点研发计划(批准号:2017YFA0304502)和山西省高等学校科技创新项目(批准号:2017101)资助的课题.

摘要: 里德伯态光谱是测量里德伯态能级结构和中性原子间相互作用的常用技术手段,特别是高精度的里德伯光谱,可以测量室温原子气室中由偶极相互作用等导致的原子能级频移.在实验中利用反向的852 nm激光和509 nm激光实现了室温原子气室中铯原子6S1/26P3/257S (D)跃迁的级联双光子激发,实现了里德伯态原子的制备.基于阶梯型电磁诱导透明获得了铯原子里德伯态的高分辨光谱.实验中,基于速度选择的射频边带调制技术,对光谱信号进行了频率标定,测量了铯原子里德伯态57D3/2和57D5/2的精细分裂,分裂间隔为(354.72.5) MHz,与理论计算结果基本一致.速度选择的射频调制光谱可以实现里德伯态原子的能级分裂测量,其测量精度对于单光子跃迁的绝对激光频率不敏感;实验中影响57D3/2和57D5/2精细分裂间隔测量精度的主要因素是功率加宽导致的电磁感应透明信号的展宽和509 nm激光频率扫描的非线性.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回