搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiTi(110)表面氧原子吸附的第一性原理研究

刘坤 王福合 尚家香

NiTi(110)表面氧原子吸附的第一性原理研究

刘坤, 王福合, 尚家香
PDF
导出引用
导出核心图
  • 为了研究给定的NiTi的表面氧化过程,在保持体系中Ni和Ti原子总数相等的条件下,构建了一系列Ti原子在表面反位的c(22)-NiTi(110)缺陷体系,并利用第一性原理计算研究了氧原子在各种NiTi(110)反位缺陷体系的吸附行为以及表面形成能.计算结果表明:吸附氧原子的稳定性与表面Ti原子的富集程度有很大的关联性,体系表面Ti原子富集程度越高,氧原子吸附的稳定性越高;当覆盖度较高时,由于氧原子的吸附,可使Ni和Ti原子在表面出现反位.在富氧条件(O -9.35 eV)下,氧原子在表面第1层中的全部Ni原子与第3层全部Ti换位的反位缺陷体系上的吸附最稳定,此时随着氧原子的吸附,表面上的Ti原子升高,导致向上膨胀生长形成二氧化钛层,且在其下方形成富Ni层,由此可合理地解释实验上发现NiTi合金氧化形成二氧化钛层的可能原因.
      通信作者: 王福合, wfh-phy@cnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51371017)资助的课题.
    [1]

    Ma L, Wang X, Shang J X 2014 Acta Phys. Sin. 63 233103 (in Chinese) [马蕾, 王旭, 尚家香 2014 物理学报 63 233103]

    [2]

    Wu H L, Zhao X Q, Gong S K 2008 Acta Phys. Sin. 57 7794 (in Chinese) [吴红丽, 赵新青, 宫声凯 2008 物理学报 57 7794]

    [3]

    Geng F, Shi P, Yang D Z 2005 J. Funct. Mater. 36 11 (in Chinese) [耿芳, 石萍, 杨大智 2005 功能材料 36 11]

    [4]

    Wang Y X, Zhang X N, Sun K 2006 Chin. J. Rare Metals 30 385 (in Chinese) [王蕴贤, 张小农, 孙康 2006 稀有金属 30 385]

    [5]

    Starosvetsky D, Gotman I 2001 Biomaterials 22 1853

    [6]

    Li Y, Zhao T, Wei S, Xiang Y, Chen H 2010 Mater. Sci. Eng. C 30 1227

    [7]

    Tan L, Dodd R A, Crone W C 2003 Biomaterials 24 3931

    [8]

    Zhao T, Li Y, Xiang Y, Xiang Y, Zhao X, Zhang T 2011 Surf. Coat. Technol. 205 4404

    [9]

    Mndl S, Lindner J K N 2006 Nucl. Instr. Meth. Phys. Res. B 249 355

    [10]

    Lutz J, Lindner J K N, Mndl S 2008 Appl. Surf. Sci. 255 1107

    [11]

    Bernard S A, Balla V K, Davies N M, Bose S, Bandyopadhyay A 2011 Acta Biomater. 7 1902

    [12]

    Hassel A W, Neelakantan L, Zelenkevych A, Ruh A 2008 Corros. Sci. 50 1368

    [13]

    Sun T, Wang M, Lee W C 2011 Mater. Chem. Phys. 130 45

    [14]

    Firstov G S, Vitchev R G, Kumar B, Blanpain B, Humbeeck J V 2002 Biomaterials 23 4863

    [15]

    Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Biomaterials 26 6916

    [16]

    Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Appl. Surf. Sci. 252 2038

    [17]

    Undisz A, Schrempel F, Wesch W, Rettenmayr M 2012 J. Biomed. Mater. Res. 100A 1743

    [18]

    Chu C L, Wu S K, Yen Y C 1996 Mater. Sci. Eng. A 216 193

    [19]

    Nolan M, Tofail S A M 2010 Biomaterials 31 3439

    [20]

    Nigussa K N, Stvneg J A 2010 Phys. Rev. B 82 245401

    [21]

    Liu X, Guo H M, Meng C G 2012 J. Phys. Chem. C 116 21771

    [22]

    Li Y C, Wang F H, Shang J X 2016 Corros. Sci. 106 137

    [23]

    Kibey S, Sehitoglu H, Johnson D D 2009 Acta Mater. 57 1624

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [26]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4972

    [27]

    Zhang C, Farhat Z N 2009 Wear 267 394

    [28]

    Diebold U 2003 Surf. Sci. Rep. 48 53

    [29]

    Muscat J, Swamy V, Harrison N M 2002 Phys. Rev. B 65 224112

    [30]

    Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406

    [31]

    Bergermayer W, Schweiger H, Wimmer E 2004 Phys. Rev. B 69 195409

    [32]

    Liu K, Wang F H 2016 Mater. Protect. 49 65 (in Chinese) [刘坤, 王福合 2016 材料防护 49 65]

  • [1]

    Ma L, Wang X, Shang J X 2014 Acta Phys. Sin. 63 233103 (in Chinese) [马蕾, 王旭, 尚家香 2014 物理学报 63 233103]

    [2]

    Wu H L, Zhao X Q, Gong S K 2008 Acta Phys. Sin. 57 7794 (in Chinese) [吴红丽, 赵新青, 宫声凯 2008 物理学报 57 7794]

    [3]

    Geng F, Shi P, Yang D Z 2005 J. Funct. Mater. 36 11 (in Chinese) [耿芳, 石萍, 杨大智 2005 功能材料 36 11]

    [4]

    Wang Y X, Zhang X N, Sun K 2006 Chin. J. Rare Metals 30 385 (in Chinese) [王蕴贤, 张小农, 孙康 2006 稀有金属 30 385]

    [5]

    Starosvetsky D, Gotman I 2001 Biomaterials 22 1853

    [6]

    Li Y, Zhao T, Wei S, Xiang Y, Chen H 2010 Mater. Sci. Eng. C 30 1227

    [7]

    Tan L, Dodd R A, Crone W C 2003 Biomaterials 24 3931

    [8]

    Zhao T, Li Y, Xiang Y, Xiang Y, Zhao X, Zhang T 2011 Surf. Coat. Technol. 205 4404

    [9]

    Mndl S, Lindner J K N 2006 Nucl. Instr. Meth. Phys. Res. B 249 355

    [10]

    Lutz J, Lindner J K N, Mndl S 2008 Appl. Surf. Sci. 255 1107

    [11]

    Bernard S A, Balla V K, Davies N M, Bose S, Bandyopadhyay A 2011 Acta Biomater. 7 1902

    [12]

    Hassel A W, Neelakantan L, Zelenkevych A, Ruh A 2008 Corros. Sci. 50 1368

    [13]

    Sun T, Wang M, Lee W C 2011 Mater. Chem. Phys. 130 45

    [14]

    Firstov G S, Vitchev R G, Kumar B, Blanpain B, Humbeeck J V 2002 Biomaterials 23 4863

    [15]

    Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Biomaterials 26 6916

    [16]

    Gu Y W, Tay B Y, Lim C S, Yong M S 2005 Appl. Surf. Sci. 252 2038

    [17]

    Undisz A, Schrempel F, Wesch W, Rettenmayr M 2012 J. Biomed. Mater. Res. 100A 1743

    [18]

    Chu C L, Wu S K, Yen Y C 1996 Mater. Sci. Eng. A 216 193

    [19]

    Nolan M, Tofail S A M 2010 Biomaterials 31 3439

    [20]

    Nigussa K N, Stvneg J A 2010 Phys. Rev. B 82 245401

    [21]

    Liu X, Guo H M, Meng C G 2012 J. Phys. Chem. C 116 21771

    [22]

    Li Y C, Wang F H, Shang J X 2016 Corros. Sci. 106 137

    [23]

    Kibey S, Sehitoglu H, Johnson D D 2009 Acta Mater. 57 1624

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [26]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4972

    [27]

    Zhang C, Farhat Z N 2009 Wear 267 394

    [28]

    Diebold U 2003 Surf. Sci. Rep. 48 53

    [29]

    Muscat J, Swamy V, Harrison N M 2002 Phys. Rev. B 65 224112

    [30]

    Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406

    [31]

    Bergermayer W, Schweiger H, Wimmer E 2004 Phys. Rev. B 69 195409

    [32]

    Liu K, Wang F H 2016 Mater. Protect. 49 65 (in Chinese) [刘坤, 王福合 2016 材料防护 49 65]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1315
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-29
  • 修回日期:  2017-07-26
  • 刊出日期:  2017-11-05

NiTi(110)表面氧原子吸附的第一性原理研究

  • 1. 首都师范大学物理系, 北京 100048;
  • 2. 北京航空航天大学材料科学与工程学院, 北京 100191
  • 通信作者: 王福合, wfh-phy@cnu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51371017)资助的课题.

摘要: 为了研究给定的NiTi的表面氧化过程,在保持体系中Ni和Ti原子总数相等的条件下,构建了一系列Ti原子在表面反位的c(22)-NiTi(110)缺陷体系,并利用第一性原理计算研究了氧原子在各种NiTi(110)反位缺陷体系的吸附行为以及表面形成能.计算结果表明:吸附氧原子的稳定性与表面Ti原子的富集程度有很大的关联性,体系表面Ti原子富集程度越高,氧原子吸附的稳定性越高;当覆盖度较高时,由于氧原子的吸附,可使Ni和Ti原子在表面出现反位.在富氧条件(O -9.35 eV)下,氧原子在表面第1层中的全部Ni原子与第3层全部Ti换位的反位缺陷体系上的吸附最稳定,此时随着氧原子的吸附,表面上的Ti原子升高,导致向上膨胀生长形成二氧化钛层,且在其下方形成富Ni层,由此可合理地解释实验上发现NiTi合金氧化形成二氧化钛层的可能原因.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回