搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dirac光子晶体

王海啸 徐林 蒋建华

Dirac光子晶体

王海啸, 徐林, 蒋建华
PDF
导出引用
导出核心图
  • Dirac费米子作为粒子物理中的基本粒子之一,其理论在近年来蓬勃发展的拓扑电子理论领域中被广泛提及并用来刻画具有Dirac费米子性质的电子态.这种特殊的能态通常被称为Dirac点,在能谱上表现为两条不同能带之间的线性交叉点.由于Dirac点往往是发生拓扑相变的转变点,因而也被视为实现各种拓扑态的重要母态.作为可与拓扑电子体系类比的拓扑光子晶体因其独特的潜在应用价值也受到人们的广泛关注,实现包含Dirac点的光子能带已成为研究拓扑光子晶体的核心课题.本文基于电子的拓扑理论,简要地回顾了Dirac点在光子系统中的研究进展,特别介绍了如何在光子晶体中利用不同晶格对称性实现在高对称点/线上的Dirac点,以及由Dirac点衍生的Weyl点.
    [1]

    Dirac P A M 1928 Proc. R. Soc. London A 118 351

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [3]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Scinece 315 1379

    [4]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [5]

    Shen S Q 1988 Phys. Rev. Lett. 61 2015

    [6]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015

    [7]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [8]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [9]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803

    [10]

    Weyl H Z 1929 Physik 56 330

    [11]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [12]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2008 Phys. Rev. Lett. 100 013905

    [13]

    Ao X Y, Lin Z F, Chan C T 2009 Phys. Rev. B 80 033105

    [14]

    Khanikaev A B, Hossein M S, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233

    [15]

    Ma T, Khanikaev A B, Hossein M S, Shvets G 2015 Phys. Rev. Lett. 114 127401

    [16]

    Chen W J, Jiang S J, Chen X D, Zhu B C, Zhou L, Dong J W, Chen C T 2014 Nat. Commun. 5 5782

    [17]

    He C, Sun X C, Liu X P, Lu M H, Chen Y L, Feng L, ChenY F 2016 Proc. Natl. Acad. Sci. USA 113 4924

    [18]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901

    [19]

    Sabyaschi B, Hirokazu M, Wade D, Edo E, Mohammad H 2016 New J. Phys. 18 113013

    [20]

    Xu L, Wang H X, Xu Y D, Chen H Y, Jiang J H 2016 Opt. Express 24 18059

    [21]

    Wang H X, Xu L, Chen H Y, Jiang J H 2016 Phys. Rev. B 93 235155

    [22]

    Wang H X, Chen Y G, Hang Z H, Kee H Y, Jiang J H 2017 npj Quantum Materials 2 54

    [23]

    Sakoda K 2012 Opt. Express 20 25181

    [24]

    Sakoda K 2012 Opt. Express 20 25181

    [25]

    Mcphedran R C, Nicorovici N A, Mckenzie D R, Botten L C, Parker A R, Rouse G W 2001 Aust. J. Chem. 54 241

    [26]

    Sanders J V 1964 Nature 204 1151

    [27]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [28]

    Lidorikis E, Sigalas M M, Economou E N, Soukoulis C M 1998 Phys. Rev. Lett. 81 1405

    [29]

    Yang B J, Nagaosa N 2014 Nat. Commun. 5 4898

    [30]

    Yang B J, Morimoto T, Furusaki A 2015 Phys. Rev. B 92 165120

    [31]

    Lu L, Joannopoulos J D, Soljacic M 2013 Nat. Photon. 7 294

  • [1]

    Dirac P A M 1928 Proc. R. Soc. London A 118 351

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [3]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Scinece 315 1379

    [4]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [5]

    Shen S Q 1988 Phys. Rev. Lett. 61 2015

    [6]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015

    [7]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [8]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [9]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803

    [10]

    Weyl H Z 1929 Physik 56 330

    [11]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [12]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2008 Phys. Rev. Lett. 100 013905

    [13]

    Ao X Y, Lin Z F, Chan C T 2009 Phys. Rev. B 80 033105

    [14]

    Khanikaev A B, Hossein M S, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233

    [15]

    Ma T, Khanikaev A B, Hossein M S, Shvets G 2015 Phys. Rev. Lett. 114 127401

    [16]

    Chen W J, Jiang S J, Chen X D, Zhu B C, Zhou L, Dong J W, Chen C T 2014 Nat. Commun. 5 5782

    [17]

    He C, Sun X C, Liu X P, Lu M H, Chen Y L, Feng L, ChenY F 2016 Proc. Natl. Acad. Sci. USA 113 4924

    [18]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901

    [19]

    Sabyaschi B, Hirokazu M, Wade D, Edo E, Mohammad H 2016 New J. Phys. 18 113013

    [20]

    Xu L, Wang H X, Xu Y D, Chen H Y, Jiang J H 2016 Opt. Express 24 18059

    [21]

    Wang H X, Xu L, Chen H Y, Jiang J H 2016 Phys. Rev. B 93 235155

    [22]

    Wang H X, Chen Y G, Hang Z H, Kee H Y, Jiang J H 2017 npj Quantum Materials 2 54

    [23]

    Sakoda K 2012 Opt. Express 20 25181

    [24]

    Sakoda K 2012 Opt. Express 20 25181

    [25]

    Mcphedran R C, Nicorovici N A, Mckenzie D R, Botten L C, Parker A R, Rouse G W 2001 Aust. J. Chem. 54 241

    [26]

    Sanders J V 1964 Nature 204 1151

    [27]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [28]

    Lidorikis E, Sigalas M M, Economou E N, Soukoulis C M 1998 Phys. Rev. Lett. 81 1405

    [29]

    Yang B J, Nagaosa N 2014 Nat. Commun. 5 4898

    [30]

    Yang B J, Morimoto T, Furusaki A 2015 Phys. Rev. B 92 165120

    [31]

    Lu L, Joannopoulos J D, Soljacic M 2013 Nat. Photon. 7 294

  • [1] 张中杰, 沈义峰, 赵浩. 基于介质环形柱结构的二维光子晶体中Dirac点的实现. 物理学报, 2015, 64(14): 147802. doi: 10.7498/aps.64.147802
    [2] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变. 物理学报, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [3] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应. 物理学报, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [4] 耿虎, 计青山, 张存喜, 王瑞. 缀饰格子中时间反演对称破缺的量子自旋霍尔效应. 物理学报, 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [5] 刘娜, 胡边, 魏鸿鹏, 刘红. 锯齿型石墨烯纳米窄带中量子霍尔体系的电场调控. 物理学报, 2018, 67(11): 117301. doi: 10.7498/aps.67.20180249
    [6] 梁九卿, 费宏明, 周飞, 杨毅彪. 光子晶体双量子阱的共振隧穿. 物理学报, 2011, 60(7): 074225. doi: 10.7498/aps.60.074225
    [7] 汪 静, 董慧媛, 刘 楣, 吴宗汉, 王振林. 由介质球构成的三维光子晶体能带结构的平面波研究. 物理学报, 2005, 54(7): 3194-3199. doi: 10.7498/aps.54.3194
    [8] 朱永政, 尹计秋, 邱明辉. 非密堆积TiO2空心微球光子晶体的制备与能带分析. 物理学报, 2008, 57(12): 7725-7728. doi: 10.7498/aps.57.7725
    [9] 吴福根, 许振龙. 基元配置对二维光子晶体不同能带之间带隙的调节和优化. 物理学报, 2009, 58(9): 6285-6290. doi: 10.7498/aps.58.6285
    [10] 许兴胜, 孙增辉, 杜 伟, 鲁 琳, 陈弘达, 熊志刚, 金爱子, 张道中. 半导体量子阱材料微加工光子晶体的光学特性. 物理学报, 2006, 55(3): 1248-1252. doi: 10.7498/aps.55.1248
    [11] 苏安, 高英俊. 双重势垒一维光子晶体量子阱的光传输特性研究. 物理学报, 2012, 61(23): 234208. doi: 10.7498/aps.61.234208
    [12] 杜晓宇, 郑婉华, 任 刚, 王 科, 邢名欣, 陈良惠. 二维光子晶体耦合腔阵列的慢波效应研究. 物理学报, 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [13] 赵绚, 刘晨, 马会丽, 冯帅. 基于波导间能量耦合效应的光子晶体频段选择与能量分束器. 物理学报, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [14] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器. 物理学报, 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [15] 沈清玮, 徐林, 蒋建华. 圆环结构磁光光子晶体中的拓扑相变. 物理学报, 2017, 66(22): 224102. doi: 10.7498/aps.66.224102
    [16] 周雯, 陈鹤鸣. 基于磁光效应的二维三角晶格光子晶体模分复用器. 物理学报, 2015, 64(6): 064210. doi: 10.7498/aps.64.064210
    [17] 王同标, 刘念华. 正负折射率材料组成的一维光子晶体的能带及电场. 物理学报, 2007, 56(10): 5878-5882. doi: 10.7498/aps.56.5878
    [18] 袁玉群, 张正仁, 隆正文, 刁心峰. 对称型单负交替一维光子晶体的能带结构. 物理学报, 2010, 59(1): 587-591. doi: 10.7498/aps.59.587
    [19] 郑瑞生, 冯玉春, 牛憨笨, 李 岩. 含有理想导体的准分形结构光子晶体的能带. 物理学报, 2004, 53(9): 3205-3210. doi: 10.7498/aps.53.3205
    [20] 陈 三, 谢双媛, 羊亚平, 陈 鸿. 双能带三维光子晶体中二能级原子的自发辐射. 物理学报, 2003, 52(4): 853-858. doi: 10.7498/aps.52.853
  • 引用本文:
    Citation:
计量
  • 文章访问数:  602
  • PDF下载量:  646
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-15
  • 修回日期:  2017-10-31
  • 刊出日期:  2017-11-20

Dirac光子晶体

    基金项目: 

    国家自然科学基金(批准号:11675116)和苏州大学科研启动基金资助的课题.

摘要: Dirac费米子作为粒子物理中的基本粒子之一,其理论在近年来蓬勃发展的拓扑电子理论领域中被广泛提及并用来刻画具有Dirac费米子性质的电子态.这种特殊的能态通常被称为Dirac点,在能谱上表现为两条不同能带之间的线性交叉点.由于Dirac点往往是发生拓扑相变的转变点,因而也被视为实现各种拓扑态的重要母态.作为可与拓扑电子体系类比的拓扑光子晶体因其独特的潜在应用价值也受到人们的广泛关注,实现包含Dirac点的光子能带已成为研究拓扑光子晶体的核心课题.本文基于电子的拓扑理论,简要地回顾了Dirac点在光子系统中的研究进展,特别介绍了如何在光子晶体中利用不同晶格对称性实现在高对称点/线上的Dirac点,以及由Dirac点衍生的Weyl点.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回