搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同类型偶氮材料光致双折射的温度特性研究

吕子瑶 潘雨佳 王长顺

引用本文:
Citation:

不同类型偶氮材料光致双折射的温度特性研究

吕子瑶, 潘雨佳, 王长顺

Temperature dependent characteristics of photo-induced birefringence in different types of azo materials

Lyu Zi-Yao, Pan Yu-Jia, Wang Chang-Shun
PDF
导出引用
  • 在不同温度下,分别测量了掺杂偶氮材料、偶氮聚合物和偶氮液晶聚合物的光致双折射行为,并利用双e指数模型对光致双折射的动力学过程进行了拟合.实验结果表明,偶氮材料的光致双折射源于偶氮分子的光致异构和光致分子取向,光致双折射大小随温度的升高表现出先增大后减小的趋势.在抽运光的作用下,含偶氮材料的光致双折射包含一个由偶氮分子取向引起的快过程和一个由偶氮分子带动大分子取向引起的慢过程.关闭抽运光后,掺杂偶氮材料和偶氮聚合物表现为可逆的弛豫,而偶氮液晶聚合物则展现出长久光存储特性.
    At different temperatures, a semiconductor laser with a wavelength of 650 nm is used as probe light, and an Nd:YAG continuous laser with a wavelength of 532 nm is selected as pump light. The azo samples are placed between a pair of orthogonal polarizers with the vertical direction clockwise and counterclockwise 45 degrees, respectively. The polarization direction of the pump light is set to be the vertical direction. In order to reduce the effect of the stray light, a chopper is placed in the optical path of the probe light. The signal of photo-induced birefringence is recorded by a phase-locked amplifier (NF-LI5640). The photo-induced birefringences of the doped azo material, the azo polymer and the azo liquid crystal polymer are measured respectively, and the dynamic processes of photo-induced birefringence are fitted by a double e-index model. The experimental results show that with the influence of the pump light, photo-induced birefringences of the three types of azo materials rise rapidly at first and then gradually tend to reach their own saturation state because of the photo-induced cis and trans isomerism and the photo-induced molecular orientation properties of azo molecules. The photo-induced birefringence shows a tendency to increase at first and then decrease with the temperature increasing, which can be understood as a competitive mechanism. The photo-induced birefringence depends on the photo-induced orientation and irregular thermal motions of azo groups. In the range below the glass transition temperature of the samples, the increase of the temperature of samples contributes to the rearrangement of the azo molecules due to the influence of the pump light. When the temperature of the samples is higher than the glass transition temperature, molecular chains begin to move. The irregular thermal motions of azo components and polymer molecules are aggravated. This destroys the orientations of the polymer molecules and results in the drop of the photo-induced birefringence. Comparing the doped azo material with the azo polymer sample, the azo liquid crystal polymer sample exhibits not only a larger photo-birefringence, but also the photo-induced birefringence that does not change obviously after the pump light has been turned off, which means that the azo liquid crystal polymer sample has long optical storage properties. This shows that the azo liquid crystal polymer material is an ideal polarization-sensitive optical recording medium, which is expected to be used in the fields of optical storage, polarization holography and optical information processing.
      通信作者: 王长顺, cswang@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574211)资助的课题.
      Corresponding author: Wang Chang-Shun, cswang@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574211).
    [1]

    Nersisyan S R, Tabiryan N V, Steeves D M, Kimball B R 2010 Proc. SPIE 7775 77750U

    [2]

    Huang S G, Gu W Y, Ma H Q 2004 Acta Phys. Sin. 53 4211 (in Chinese) [黄善国, 顾畹仪, 马海强 2004 物理学报 53 4211]

    [3]

    Yao B L, Ren Z W, Menke N, Wang Y L, Zheng Y, Lei M, Chen G F, Hampp N 2005 Appl. Opt. 44 7344

    [4]

    He T C, Wang C S, Pan X, Yang H, Lu G Y 2009 Opt. Lett. 34 665

    [5]

    Guo M, Xu Z D, Wang X G 2008 Opt. Mater. 31 412

    [6]

    Wang Y L, Yao B L, Chen Y, Fan M G, Zheng Y, Menke N M L, Lei M, Chen G F, Han Y, Yan Q Q, Meng X J 2004 Acta Phys. Sin. 53 66 (in Chinese) [王英丽, 姚保利, 陈懿, 樊美公, 郑媛, 门克内木乐, 雷铭, 陈国夫, 韩勇, 闫起强, 孟宪娟 2004 物理学报 53 66]

    [7]

    Zhou J L, Shen J, Yang J J, Ke Y, Wang K Y, Zhang Q J 2006 Opt. Lett. 31 1370

    [8]

    Provenzano C, Pagliusi P, Mazzulla A, Cipparrone G 2010 Opt. Lett. 35 1822

    [9]

    Yamamoto T, Hasegawa M, Kanazawa A, Shiono T, Ikeda T 2000 J. Mater. Chem. 10 337

    [10]

    Qi S W, Yang X Q, Chen K, Zhang C P, Zhang L S, Wang X Y, Xu T, Liu Y L, Zhang G Y 2005 Acta Phys. Sin. 54 3189 (in Chinese) [祁胜文, 杨秀芹, 陈宽, 张春平, 张连顺, 王新宇, 许棠, 刘永亮, 张光寅 2005 物理学报 54 3189]

    [11]

    Ambrosio A, Maddalena P, Marrucci L 2013 Phys. Rev. Lett. 110 146102

    [12]

    Feldmann D, Maduar S R, Santer M, Vinogradova N, Santer S 2016 Sci. Rep. 6 36443

    [13]

    Wie J J, Shankar M R, White T J 2016 Nat. Commun. 7 13260

    [14]

    Sarkissian H, Serak S V, Tabiryan N V, Glebov L B, Rotar V, Zeldovich B Y 2006 Opt. Lett. 31 2248

    [15]

    Natansohn A, Rochon P 2002 Chem. Rev. 102 4139

    [16]

    Wei H Y, Cao L C, Xu Z F, He Q S, Jin G F, Gu C 2006 Opt. Express 14 5135

    [17]

    Ruiz U, Pagliusi P, Provenzano C, Shibaevand V P, Cipparrone G 2012 Adv. Funct. Mater. 22 2964

    [18]

    Ikeda T, Tsutsumi O 1995 Science 268 1873

    [19]

    Morikawa Y, Nagano S, Watanabe K, Kamata K, Iyoda T, Seki T 2006 Adv. Mater. 18 883

    [20]

    Pan S, Ni M, Mu B, Li Q, Hu X, Lin C, Chen D, Wang L Y 2015 Adv. Funct. Mater. 25 3571

    [21]

    Tian Y Q, Xie J L, Wang C S, Zhao Y Y, Fei H S 1999 Polymer 40 3835

    [22]

    Blanche P A, Lemaire C, Maertens C, Dubois P, Jérôme R 2000 J. Opt. Soc. Am. B 17 729

    [23]

    Si J H, Qiu J R, Guo J Y, Qian G D, Wang M Q, Hirao K 2003 Appl. Opt. 42 7170

    [24]

    Natansohn A, Rochon P 1998 Macromolecules 31 7960

    [25]

    Hore D, Natansohn A, Rochon P 1998 Can. J. Chem. 76 1648

  • [1]

    Nersisyan S R, Tabiryan N V, Steeves D M, Kimball B R 2010 Proc. SPIE 7775 77750U

    [2]

    Huang S G, Gu W Y, Ma H Q 2004 Acta Phys. Sin. 53 4211 (in Chinese) [黄善国, 顾畹仪, 马海强 2004 物理学报 53 4211]

    [3]

    Yao B L, Ren Z W, Menke N, Wang Y L, Zheng Y, Lei M, Chen G F, Hampp N 2005 Appl. Opt. 44 7344

    [4]

    He T C, Wang C S, Pan X, Yang H, Lu G Y 2009 Opt. Lett. 34 665

    [5]

    Guo M, Xu Z D, Wang X G 2008 Opt. Mater. 31 412

    [6]

    Wang Y L, Yao B L, Chen Y, Fan M G, Zheng Y, Menke N M L, Lei M, Chen G F, Han Y, Yan Q Q, Meng X J 2004 Acta Phys. Sin. 53 66 (in Chinese) [王英丽, 姚保利, 陈懿, 樊美公, 郑媛, 门克内木乐, 雷铭, 陈国夫, 韩勇, 闫起强, 孟宪娟 2004 物理学报 53 66]

    [7]

    Zhou J L, Shen J, Yang J J, Ke Y, Wang K Y, Zhang Q J 2006 Opt. Lett. 31 1370

    [8]

    Provenzano C, Pagliusi P, Mazzulla A, Cipparrone G 2010 Opt. Lett. 35 1822

    [9]

    Yamamoto T, Hasegawa M, Kanazawa A, Shiono T, Ikeda T 2000 J. Mater. Chem. 10 337

    [10]

    Qi S W, Yang X Q, Chen K, Zhang C P, Zhang L S, Wang X Y, Xu T, Liu Y L, Zhang G Y 2005 Acta Phys. Sin. 54 3189 (in Chinese) [祁胜文, 杨秀芹, 陈宽, 张春平, 张连顺, 王新宇, 许棠, 刘永亮, 张光寅 2005 物理学报 54 3189]

    [11]

    Ambrosio A, Maddalena P, Marrucci L 2013 Phys. Rev. Lett. 110 146102

    [12]

    Feldmann D, Maduar S R, Santer M, Vinogradova N, Santer S 2016 Sci. Rep. 6 36443

    [13]

    Wie J J, Shankar M R, White T J 2016 Nat. Commun. 7 13260

    [14]

    Sarkissian H, Serak S V, Tabiryan N V, Glebov L B, Rotar V, Zeldovich B Y 2006 Opt. Lett. 31 2248

    [15]

    Natansohn A, Rochon P 2002 Chem. Rev. 102 4139

    [16]

    Wei H Y, Cao L C, Xu Z F, He Q S, Jin G F, Gu C 2006 Opt. Express 14 5135

    [17]

    Ruiz U, Pagliusi P, Provenzano C, Shibaevand V P, Cipparrone G 2012 Adv. Funct. Mater. 22 2964

    [18]

    Ikeda T, Tsutsumi O 1995 Science 268 1873

    [19]

    Morikawa Y, Nagano S, Watanabe K, Kamata K, Iyoda T, Seki T 2006 Adv. Mater. 18 883

    [20]

    Pan S, Ni M, Mu B, Li Q, Hu X, Lin C, Chen D, Wang L Y 2015 Adv. Funct. Mater. 25 3571

    [21]

    Tian Y Q, Xie J L, Wang C S, Zhao Y Y, Fei H S 1999 Polymer 40 3835

    [22]

    Blanche P A, Lemaire C, Maertens C, Dubois P, Jérôme R 2000 J. Opt. Soc. Am. B 17 729

    [23]

    Si J H, Qiu J R, Guo J Y, Qian G D, Wang M Q, Hirao K 2003 Appl. Opt. 42 7170

    [24]

    Natansohn A, Rochon P 1998 Macromolecules 31 7960

    [25]

    Hore D, Natansohn A, Rochon P 1998 Can. J. Chem. 76 1648

  • [1] 赵文丽, 孙丰伟, 张红, 王永刚, 高峰, 孟庆田. $ {\text{D}} + {\text{Si}}{{\text{D}}^ + } \to {{\text{D}}_2} + {\text{S}}{{\text{i}}^ + } $反应量子波包动力学研究. 物理学报, 2022, 71(22): 228201. doi: 10.7498/aps.71.20221155
    [2] 陈天宇, 王长顺, 潘雨佳, 孙丽丽. 利用全息法在偶氮聚合物薄膜中记录涡旋光场. 物理学报, 2021, 70(5): 054204. doi: 10.7498/aps.70.20201496
    [3] 袁方园, 朱子亮. D + DBr反应的态-态动力学研究. 物理学报, 2020, 69(11): 113401. doi: 10.7498/aps.69.20200321
    [4] 蔡伟, 邢俊晖, 杨志勇. 磁光材料Verdet常数贡献性的讨论. 物理学报, 2017, 66(18): 187801. doi: 10.7498/aps.66.187801
    [5] 王美洁, 贾维国, 张思远, 门克内木乐, 杨军, 张俊萍. 低双折射光纤中拉曼增益对光偏振态的影响. 物理学报, 2015, 64(3): 034212. doi: 10.7498/aps.64.034212
    [6] 王美洁, 贾维国, 张思远, 乔海龙, 杨军, 张俊萍, 门克内木乐. 拉曼效应对低双折射光纤偏振特性的影响. 物理学报, 2014, 63(10): 104204. doi: 10.7498/aps.63.104204
    [7] 徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳. 准经典轨线法研究交换反应H(D)+SH/SD的动力学性质. 物理学报, 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [8] 杨一鸣, 王甲富, 屈绍波, 柏鹏, 李哲, 夏颂, 王军, 徐卓. 基于高介电常数基板和金属结构负折射材料的设计,仿真与验证. 物理学报, 2011, 60(5): 054103. doi: 10.7498/aps.60.054103
    [9] 谢茹胜, 赵有源. 新型掺偶氮苯聚合物的取向增强及全息存储. 物理学报, 2011, 60(5): 054202. doi: 10.7498/aps.60.054202
    [10] 田勇, 潘煦, 王长顺, 张小强, 曾艺. 偶氮液晶聚合物薄膜的二维偏振全息记录. 物理学报, 2009, 58(10): 6979-6984. doi: 10.7498/aps.58.6979
    [11] 延凤平, 李一凡, 王 琳, 龚桃荣, 刘 鹏, 刘 洋, 陶沛琳, 曲美霞, 简水生. 近椭圆内包层高双折射偏振稳定光子晶体光纤设计及特性分析. 物理学报, 2008, 57(9): 5735-5741. doi: 10.7498/aps.57.5735
    [12] 郜 鹏, 姚保利, 韩俊鹤, 陈利菊, 王英利, 雷 铭. 菌紫质同线偏振全息记录时再现光偏振方向对衍射效率的调制. 物理学报, 2008, 57(5): 2952-2958. doi: 10.7498/aps.57.2952
    [13] 祁胜文, 杨秀芹, 陈 宽, 张春平, 张连顺, 王新宇, 许 棠, 柳永亮, 张光寅. 偶氮材料——乙基橙的光致双折射特性. 物理学报, 2005, 54(7): 3189-3193. doi: 10.7498/aps.54.3189
    [14] 任志伟, 姚保利, 门克内木乐, 王英利, 郑 媛, 雷 铭, 陈国夫. 菌紫质高密度偏振全息光数据存储实验研究. 物理学报, 2005, 54(6): 2699-2703. doi: 10.7498/aps.54.2699
    [15] 梁检初, 王晓生, 罗锻斌, 佘卫龙, 吴水珠, 曾 钫, 唐 天, 姚胜兰. 掺杂偶氮苯聚合物光致异构Z扫描测量及其理论解释. 物理学报, 2004, 53(10): 3596-3600. doi: 10.7498/aps.53.3596
    [16] 王英利, 姚保利, 陈懿, 樊美公, 郑媛, 门克内木乐, 雷铭, 陈国夫, 韩勇, 闫起强, 孟宪娟. 吲哚俘精酰胺的偏振全息图像光存储实验研究. 物理学报, 2004, 53(1): 66-69. doi: 10.7498/aps.53.66
    [17] 梁忠诚, 明海, 王沛, 章江英, 龙云泽, 夏勇, 谢建平, 张其锦. 偶氮液晶聚合物中的非线性光致双折射. 物理学报, 2001, 50(12): 2482-2486. doi: 10.7498/aps.50.2482
    [18] 于美文, 张存林. 光致各向异性记录介质偏振全息图的透射矩阵. 物理学报, 1992, 41(5): 759-765. doi: 10.7498/aps.41.759
    [19] 岳学锋, 邵宗书, 陈焕矗, 王应素. 光致折变晶体全息存贮中的最大衍射效率. 物理学报, 1988, 37(12): 2057-2061. doi: 10.7498/aps.37.2057
    [20] 激光晶体研究组. [001]取向YAG激光棒的热致双折射效应. 物理学报, 1977, 26(2): 93-99. doi: 10.7498/aps.26.93
计量
  • 文章访问数:  4262
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-14
  • 修回日期:  2017-07-23
  • 刊出日期:  2017-12-05

/

返回文章
返回