搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液相硝基甲烷分子振动特性的相干反斯托克斯拉曼散射光谱

彭亚晶 孙爽 宋云飞 杨延强

液相硝基甲烷分子振动特性的相干反斯托克斯拉曼散射光谱

彭亚晶, 孙爽, 宋云飞, 杨延强
PDF
导出引用
导出核心图
  • 构建时间分辨相干反斯托克斯拉曼散射(CARS)光谱系统,从微观层次研究硝基甲烷的分子相干振动动力学特性.实验中采用超连续白光作为斯托克斯光,通过调整斯托克斯光的时间延迟,得到不同振动模式的CARS光谱.通过对振动弛豫曲线的拟合,获得硝基甲烷分子不同振动模式的振动失相时间.结果表明CH键伸缩振动比CN键伸缩振动更容易受热声子的影响.在热加载下,硝基甲烷分子的CH键有望首先被激发并引起初始化学反应.
      通信作者: 宋云飞, songyunfei@caep.cn;yqyang@hit.edu.cn ; 杨延强, songyunfei@caep.cn;yqyang@hit.edu.cn
    • 基金项目: 辽宁省自然科学基金(批准号:2015020248)和中国工程物理研究院流体物理研究所基金(批准号:HX2016140)资助的课题.
    [1]

    Peng Y J, Ye Y Q 2015 Chemistry 78 693 (in Chinese)[彭亚晶,叶玉清 2015 化学通报 78 693]

    [2]

    Conner R W, Dlott D D 2012 J. Phys. Chem. C 116 14737

    [3]

    Rossi C, Zhang K L, Estve D, Alphonse P 2007 J. Microelectromech. Syst. 16 919

    [4]

    Peng Y J, Song Y F, Cai K D 2015 Nanoaluminum Composite Energetic Materials (Beijing: Chemical Industry Press) p46 (in Chinese)[彭亚晶, 宋云飞, 蔡克迪 2015 纳米铝复合含能材料 (北京: 化学工业出版社) 第46页]

    [5]

    Liu Y, Jiang Y T, Zhang T L, Feng C G, Yang L 2015 J. Therm. Anal. Calorim. 119 659

    [6]

    Pagoria P F, Lee G S, Mitchell A R, Schmidt R D 2002 Thermochim. Acta 384 187

    [7]

    Sikder A, Sikder N 2004 J. Hazard. Mater. 112 1

    [8]

    Badgujar D, Talawar M, Asthana S, Mahulikar P 2008 J. Hazard. Mater. 151 289

    [9]

    Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B 2009 J. Hazard. Mater. 161 589

    [10]

    Namboodiri V V, Ahmed M, Podagatlapalli G K, Singh A K 2015 Proc. Indian Natl. Sci. Acad. 81 525

    [11]

    Wu H L, Song Y F, Yu G Y, Chen X L, Yang Y Q 2016 J. Raman Spectrosc. 47 1213

    [12]

    Duan X H, Li W P, Pei C H, Zhou X Q 2013 J. Mol. Model. 19 3893

    [13]

    Shan T, Thompson A P 2014 J. Phys. Conf. Ser. 500 172009

    [14]

    Chu G B, Shui M, Song Y F, Xu T, Gu Y Q, Yang Y Q 2015 J. Chem. Phys. 28 49

    [15]

    Cianetti S, Negrerie M, Vos M H, Martin J L, Kruglik S G 2004 J. Am. Chem. Soc. 126 13932

    [16]

    Chan P Y, Kwok W M, Lam S K, Phillips D L 2005 J. Am. Chem. Soc. 127 8246

    [17]

    Winey J M, Gupta Y M 1997 J. Phys. Chem. B 101 10733

    [18]

    Winey J M, Duvall G E, Knudson M D, Gupta Y M 2000 J. Chem. Phys. 113 7492

    [19]

    Cataliotti R S, Foggi P, Giorgini M G, Mariani L, Morresi A, Paliani G 1993 J. Chem. Phys. 98 4372

    [20]

    Hill J R, Moore D S, Schmidt S C, Storm C B 1991 J. Chem. Phys. 95 3039

    [21]

    Shkurinov A, Jonusauskast G, Rulliere C 1994 J. Raman Spectrosc. 25 359

    [22]

    Dogariu A, Pidwerbetsky A 2012 Lasers, Sources, and Related Photonic Devices, OSA Technical Digest pLM1B.2

    [23]

    Guray T, Franken J, Hambir S A, Hare D E, Dlott D D 1997 Phys. Rev. Letts. 78 4585

    [24]

    Yang Y, Hambir A A, Dlott D D 2002 Shock Waves 12 129

    [25]

    Yang Y Q, Sun Z Y, Wang S F, Dlott D D 2003 J. Phys. Chem. B 107 4485

    [26]

    Merrick J P, Moran D, Radom L 2007 J. Phys. Chem. A 111 11683

    [27]

    Pangilinan G I, Gupta Y M 1994 J. Phys. Chem. 98 4522

    [28]

    Megyes T, Blint S, Grsz T, Radnai T, Bak I 2007 J. Chem. Phys. 126 164507

  • [1]

    Peng Y J, Ye Y Q 2015 Chemistry 78 693 (in Chinese)[彭亚晶,叶玉清 2015 化学通报 78 693]

    [2]

    Conner R W, Dlott D D 2012 J. Phys. Chem. C 116 14737

    [3]

    Rossi C, Zhang K L, Estve D, Alphonse P 2007 J. Microelectromech. Syst. 16 919

    [4]

    Peng Y J, Song Y F, Cai K D 2015 Nanoaluminum Composite Energetic Materials (Beijing: Chemical Industry Press) p46 (in Chinese)[彭亚晶, 宋云飞, 蔡克迪 2015 纳米铝复合含能材料 (北京: 化学工业出版社) 第46页]

    [5]

    Liu Y, Jiang Y T, Zhang T L, Feng C G, Yang L 2015 J. Therm. Anal. Calorim. 119 659

    [6]

    Pagoria P F, Lee G S, Mitchell A R, Schmidt R D 2002 Thermochim. Acta 384 187

    [7]

    Sikder A, Sikder N 2004 J. Hazard. Mater. 112 1

    [8]

    Badgujar D, Talawar M, Asthana S, Mahulikar P 2008 J. Hazard. Mater. 151 289

    [9]

    Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B 2009 J. Hazard. Mater. 161 589

    [10]

    Namboodiri V V, Ahmed M, Podagatlapalli G K, Singh A K 2015 Proc. Indian Natl. Sci. Acad. 81 525

    [11]

    Wu H L, Song Y F, Yu G Y, Chen X L, Yang Y Q 2016 J. Raman Spectrosc. 47 1213

    [12]

    Duan X H, Li W P, Pei C H, Zhou X Q 2013 J. Mol. Model. 19 3893

    [13]

    Shan T, Thompson A P 2014 J. Phys. Conf. Ser. 500 172009

    [14]

    Chu G B, Shui M, Song Y F, Xu T, Gu Y Q, Yang Y Q 2015 J. Chem. Phys. 28 49

    [15]

    Cianetti S, Negrerie M, Vos M H, Martin J L, Kruglik S G 2004 J. Am. Chem. Soc. 126 13932

    [16]

    Chan P Y, Kwok W M, Lam S K, Phillips D L 2005 J. Am. Chem. Soc. 127 8246

    [17]

    Winey J M, Gupta Y M 1997 J. Phys. Chem. B 101 10733

    [18]

    Winey J M, Duvall G E, Knudson M D, Gupta Y M 2000 J. Chem. Phys. 113 7492

    [19]

    Cataliotti R S, Foggi P, Giorgini M G, Mariani L, Morresi A, Paliani G 1993 J. Chem. Phys. 98 4372

    [20]

    Hill J R, Moore D S, Schmidt S C, Storm C B 1991 J. Chem. Phys. 95 3039

    [21]

    Shkurinov A, Jonusauskast G, Rulliere C 1994 J. Raman Spectrosc. 25 359

    [22]

    Dogariu A, Pidwerbetsky A 2012 Lasers, Sources, and Related Photonic Devices, OSA Technical Digest pLM1B.2

    [23]

    Guray T, Franken J, Hambir S A, Hare D E, Dlott D D 1997 Phys. Rev. Letts. 78 4585

    [24]

    Yang Y, Hambir A A, Dlott D D 2002 Shock Waves 12 129

    [25]

    Yang Y Q, Sun Z Y, Wang S F, Dlott D D 2003 J. Phys. Chem. B 107 4485

    [26]

    Merrick J P, Moran D, Radom L 2007 J. Phys. Chem. A 111 11683

    [27]

    Pangilinan G I, Gupta Y M 1994 J. Phys. Chem. 98 4522

    [28]

    Megyes T, Blint S, Grsz T, Radnai T, Bak I 2007 J. Chem. Phys. 126 164507

  • 引用本文:
    Citation:
计量
  • 文章访问数:  126
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-14
  • 修回日期:  2017-09-28
  • 刊出日期:  2018-01-20

液相硝基甲烷分子振动特性的相干反斯托克斯拉曼散射光谱

    基金项目: 

    辽宁省自然科学基金(批准号:2015020248)和中国工程物理研究院流体物理研究所基金(批准号:HX2016140)资助的课题.

摘要: 构建时间分辨相干反斯托克斯拉曼散射(CARS)光谱系统,从微观层次研究硝基甲烷的分子相干振动动力学特性.实验中采用超连续白光作为斯托克斯光,通过调整斯托克斯光的时间延迟,得到不同振动模式的CARS光谱.通过对振动弛豫曲线的拟合,获得硝基甲烷分子不同振动模式的振动失相时间.结果表明CH键伸缩振动比CN键伸缩振动更容易受热声子的影响.在热加载下,硝基甲烷分子的CH键有望首先被激发并引起初始化学反应.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回