搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响

李德铭 方松科 童金山 苏健 张娜 宋桂林

Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响

李德铭, 方松科, 童金山, 苏健, 张娜, 宋桂林
PDF
导出引用
导出核心图
  • 采用固相反应法制备Sm1-xCaxFeO3(x=0,0.1,0.2,0.3)样品,研究Ca2+掺杂对SmFeO3介电性能、铁磁性及磁相变温度的影响.X射线衍射图谱分析表明:所有样品的主衍射峰与SmFeO3相符合且具有良好的晶体结构.随着x的增加,SmFeO3样品的晶粒尺寸由原来的0.5 μm逐渐增大到2 μm.当f=1 kHz时,Sm1-xCaxFeO3(x=0.1,0.2,0.3)样品的εr分别是SmFeO3的5倍、3倍和2.6倍,而tg σ增大一个数量级.在3 T磁场作用下,SmFeO3样品的M-H呈线性,随着x的增加,M-H逐渐趋向饱和,Sm1-xCaxFeO3(x=0.1,0.2,0.3)样品的Mr分别是SmFeO3的20倍、31倍和68倍.X射线光电子能谱分析表明:Fe2+和Fe3+共存于Sm1-xCaxFeO3样品中,Fe2+/Fe3+比例随着x的增加而增大,证明Ca2+掺杂增加了Fe2+的含量,形成Fe2+–O2-–Fe3+超交换作用,增强SmFeO3的铁磁特性.测量了Sm1-xCaxFeO3样品在外加磁场为1000 Oe(1 Oe=79.5775 A/m)的M-T变化关系,观测到其自旋重组温度(TSR)和尼尔温度(TN)分别为438 K和687 K,发现SmFeO3样品的TSR和TN均随着x的增加向低温方向移动,当x=0.3时,自旋重组现象消失.这主要是SmFeO3样品磁结构的稳定性和Fe3+–O2-–Fe3+及Sm3+–O2-–Fe3+超交换三者共同作用的结果.
      通信作者: 宋桂林, guilinyichen@163.com
    • 基金项目: 国家自然科学基金(批准号:11504093,U1304518)、河南省基础和前沿技术研究项目(批准号:162300410086)、河南省高等教育重点研究项目(批准号:18A140022)和河南师范大学博士启动项目(批准号:qd16173)赞助的课题.
    [1]

    Hosoya Y, Itagaki Y, Aono H, Sadaoka Y 2005 Sensor Actuat. B:Chem. 108 198.

    [2]

    Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima T, Tokura Y 2009 Nat. Mater. 8 558

    [3]

    Yuan X P, Tang Y K, Sun Y, Xu M X 2012 J. Appl. Phys. 111 053911

    [4]

    Steele B C, Heinzel A 2001 Nature 414 345

    [5]

    Kuo C Y, Drees Y, Fernández-Díaz M T, Zhao L, Vasylechko L, Sheptyakov D, Bell A M T, Pi T W, Lin H J, Steppke A, Tjeng L H, Hu Z, Komarek A C 2014 Phys. Rev. Lett. 113 217203

    [6]

    Lee J H, Jeong Y K, Park J H, Oak M A, Jang H M, Son J Y, Scott J F 2011 Phys. Rev. Lett. 107 117201

    [7]

    Yuvaraja S, Layekb S, Vidyavathyc S M, Yuvaraja S, Meyrickd D, Selvana R K 2015 Mater. Res. Bull. 72 77

    [8]

    Xu K, Zhao W Y, Xing J J, Gu H, Ren W, Zhang J C, Cao S X 2017 J. Cryst. Growth. 467 111

    [9]

    Zhao X Y, Zhang K L, Xu K, Man P W, Xie T, Wu A H, Ma G H, Cao S X, Su L B 2016 Solid State Commun. 231-232 43

    [10]

    Silva-Santana M C, daSilva C A, Barrozo P, Plaza E J R, de los Santos Valladares L, Moreno N O 2016 J. Magn. Magn. Mater. 401 612

    [11]

    Kang J, Cui X P, Fang Y F, Zhang J C 2016 Solid State Commun. 248 101

    [12]

    Praveena K, Bharathi P, Liu H L, Varma K B R 2016 Ceram. Int. 42 13572

    [13]

    Huízar-Félix A M, Hernández T, de la Parra S, Ibarra J, Kharisov B 2012 Powder Technol. 229 290

    [14]

    Song G L, Su J, Zhang N, Chang F G 2015 Acta Phys. Sin. 64 247502 (in Chinese) [宋桂林, 苏健, 张娜, 常方高 2015 物理学报 64 247502]

    [15]

    Prasad B V, Narsinga Rao G, Chen J W, Suresh Babu D 2011 Mater. Res. Bull. 46 1670

    [16]

    Jaiswal A, Das R, Adyanthaya S, Poddar P 2011 J. Phys. Chem. C 115 2954

    [17]

    Jung J S, Iyama A, Nakamura H, Mizumaki M, Kawamura N, Wakabayashi Y, Kimura T 2010 Phys. Rev. B 82 212403

    [18]

    Cao S, Zhao H, Kang B J, Zhang J C, Ren W 2014 Sci. Rep 4 5960

    [19]

    Babu P R, Bhaumik I, Ganesamoorthy S, Kalainathan S, Bhatt R, Karnal A K, Gupta P K 2016 J. Alloy. Compd. 676 313

    [20]

    Zhang C Y, Shang M Y, Liu M L, Zhang T S, Ge L, Yuan H M, Feng S H 2016 J. Alloy. Compd. 665 152

    [21]

    Jeong Y K, Lee J H, Ahn S J, Jang H M 2012 Solid State Commun. 152 1112

    [22]

    Marshall L G, Cheng J G, Zhou J S, Goodenough J B, Yan J Q, Mandrus D G 2012 Phys. Rev. B 86 064417

    [23]

    Zhao H, Cao S, Huang R, Ren W, Yuan S, Kang B, Lu B, Zhang J 2013 J. Appl. Phys. 114 113907

    [24]

    Song G L, Zhang H X, Wang T X, Yang H G, Chang F G 2012 J. Magn. Magn. Mater. 324 2121

    [25]

    Sati P C, Kumar M, Chhoker S 2015 Ceram. Int. 41 3227

    [26]

    Song G L, Song Y C, Su J, Song X H, Zhang N, Wang T X, Chang F G 2017 J. Alloy. Compd. 696 503

  • [1]

    Hosoya Y, Itagaki Y, Aono H, Sadaoka Y 2005 Sensor Actuat. B:Chem. 108 198.

    [2]

    Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima T, Tokura Y 2009 Nat. Mater. 8 558

    [3]

    Yuan X P, Tang Y K, Sun Y, Xu M X 2012 J. Appl. Phys. 111 053911

    [4]

    Steele B C, Heinzel A 2001 Nature 414 345

    [5]

    Kuo C Y, Drees Y, Fernández-Díaz M T, Zhao L, Vasylechko L, Sheptyakov D, Bell A M T, Pi T W, Lin H J, Steppke A, Tjeng L H, Hu Z, Komarek A C 2014 Phys. Rev. Lett. 113 217203

    [6]

    Lee J H, Jeong Y K, Park J H, Oak M A, Jang H M, Son J Y, Scott J F 2011 Phys. Rev. Lett. 107 117201

    [7]

    Yuvaraja S, Layekb S, Vidyavathyc S M, Yuvaraja S, Meyrickd D, Selvana R K 2015 Mater. Res. Bull. 72 77

    [8]

    Xu K, Zhao W Y, Xing J J, Gu H, Ren W, Zhang J C, Cao S X 2017 J. Cryst. Growth. 467 111

    [9]

    Zhao X Y, Zhang K L, Xu K, Man P W, Xie T, Wu A H, Ma G H, Cao S X, Su L B 2016 Solid State Commun. 231-232 43

    [10]

    Silva-Santana M C, daSilva C A, Barrozo P, Plaza E J R, de los Santos Valladares L, Moreno N O 2016 J. Magn. Magn. Mater. 401 612

    [11]

    Kang J, Cui X P, Fang Y F, Zhang J C 2016 Solid State Commun. 248 101

    [12]

    Praveena K, Bharathi P, Liu H L, Varma K B R 2016 Ceram. Int. 42 13572

    [13]

    Huízar-Félix A M, Hernández T, de la Parra S, Ibarra J, Kharisov B 2012 Powder Technol. 229 290

    [14]

    Song G L, Su J, Zhang N, Chang F G 2015 Acta Phys. Sin. 64 247502 (in Chinese) [宋桂林, 苏健, 张娜, 常方高 2015 物理学报 64 247502]

    [15]

    Prasad B V, Narsinga Rao G, Chen J W, Suresh Babu D 2011 Mater. Res. Bull. 46 1670

    [16]

    Jaiswal A, Das R, Adyanthaya S, Poddar P 2011 J. Phys. Chem. C 115 2954

    [17]

    Jung J S, Iyama A, Nakamura H, Mizumaki M, Kawamura N, Wakabayashi Y, Kimura T 2010 Phys. Rev. B 82 212403

    [18]

    Cao S, Zhao H, Kang B J, Zhang J C, Ren W 2014 Sci. Rep 4 5960

    [19]

    Babu P R, Bhaumik I, Ganesamoorthy S, Kalainathan S, Bhatt R, Karnal A K, Gupta P K 2016 J. Alloy. Compd. 676 313

    [20]

    Zhang C Y, Shang M Y, Liu M L, Zhang T S, Ge L, Yuan H M, Feng S H 2016 J. Alloy. Compd. 665 152

    [21]

    Jeong Y K, Lee J H, Ahn S J, Jang H M 2012 Solid State Commun. 152 1112

    [22]

    Marshall L G, Cheng J G, Zhou J S, Goodenough J B, Yan J Q, Mandrus D G 2012 Phys. Rev. B 86 064417

    [23]

    Zhao H, Cao S, Huang R, Ren W, Yuan S, Kang B, Lu B, Zhang J 2013 J. Appl. Phys. 114 113907

    [24]

    Song G L, Zhang H X, Wang T X, Yang H G, Chang F G 2012 J. Magn. Magn. Mater. 324 2121

    [25]

    Sati P C, Kumar M, Chhoker S 2015 Ceram. Int. 41 3227

    [26]

    Song G L, Song Y C, Su J, Song X H, Zhang N, Wang T X, Chang F G 2017 J. Alloy. Compd. 696 503

  • [1] 马玉彬. 脱氧La0.5Ca0.5MnO3样品的铁磁-反铁磁转变和电阻率变化. 物理学报, 2009, 58(7): 4976-4979. doi: 10.7498/aps.58.4976
    [2] 宋桂林, 苏健, 张娜, 常方高. 多铁材料Bi1-xCaxFeO3的介电、铁磁特性和高温磁相变. 物理学报, 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [3] 宋桂林, 罗艳萍, 苏健, 周晓辉, 常方高. Dy, Co共掺杂对BiFeO3陶瓷磁特性和磁相变温度Tc的影响. 物理学报, 2013, 62(9): 097502. doi: 10.7498/aps.62.097502
    [4] 宋桂林, 周晓辉, 苏健, 杨海刚, 王天兴, 常方高. Gd,Co共掺杂对BiFeO3陶瓷电输运和铁磁特性的影响. 物理学报, 2012, 61(17): 177501. doi: 10.7498/aps.61.177501
    [5] 程金光, 隋 郁, 千正男, 刘志国, 黄喜强, 苗继鹏, 吕 喆, 王先杰, 苏文辉. 单晶NdMnO3的比热研究. 物理学报, 2005, 54(9): 4359-4364. doi: 10.7498/aps.54.4359
    [6] 滕 蛟, 郑瑞伦, 张翠玲. NiFeNb种子层对坡莫合金磁滞回线的影响. 物理学报, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [7] 罗旭, 朱海燕, 丁雅萍. 基于力磁耦合效应的铁磁材料修正磁化模型. 物理学报, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [8] 朱洁, 苏垣昌, 潘靖, 封国林. 高斯型非均匀应力对铁磁薄膜磁化性质的影响. 物理学报, 2013, 62(16): 167503. doi: 10.7498/aps.62.167503
    [9] 刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋. 基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正. 物理学报, 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [10] 肖春涛, 曹先胜. La0.67Pb0.33MnO3的Preisach分析. 物理学报, 2004, 53(7): 2347-2351. doi: 10.7498/aps.53.2347
    [11] 邓娅, 赵国平, 薄鸟. 交换弹簧磁性多层膜的磁矩取向及磁滞回线的解析研究. 物理学报, 2011, 60(3): 037502. doi: 10.7498/aps.60.037502
    [12] 于佳, 刘通, 赵康, 潘伯津, 穆青隔, 阮彬彬, 任治安. 112型铁基化合物EuFeAs2的单晶生长与表征. 物理学报, 2018, 67(20): 207403. doi: 10.7498/aps.67.20181393
    [13] 鲜承伟, 张庆香, 徐劲松, 赵国平. 垂直取向Nd2Fe14B/α-Fe磁性三层膜的磁化反转. 物理学报, 2009, 58(5): 3509-3514. doi: 10.7498/aps.58.3509
    [14] 王光建, 蒋成保. Sm(CobalFe0.1Cu0.1Zr0.033)6.9高温永磁合金的矫顽力. 物理学报, 2012, 61(18): 187503. doi: 10.7498/aps.61.187503
    [15] 李正华, 李翔. L10-FePt合金单层磁性薄膜的微磁学模拟. 物理学报, 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [16] 王文虎, 熊玉峰, 李世亮, 陈兆甲, 闻海虎. Bi2Sr2CaCu2O8单晶中的反常尖锋效应. 物理学报, 2001, 50(12): 2466-2470. doi: 10.7498/aps.50.2466
    [17] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究. 物理学报, 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [18] 郑 鹉, 王艾玲, 姜宏伟, 周云松, 李 彤. Co-Pt-C颗粒膜的磁性. 物理学报, 2004, 53(8): 2761-2765. doi: 10.7498/aps.53.2761
    [19] 王治国, 丁国辉, 许伯威. 反铁磁链的自旋Peierls相变. 物理学报, 1999, 48(2): 296-301. doi: 10.7498/aps.48.296
    [20] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. NiS2-xSex在x=1.00附近的反铁磁量子相变. 物理学报, 2008, 57(4): 2409-2414. doi: 10.7498/aps.57.2409
  • 引用本文:
    Citation:
计量
  • 文章访问数:  421
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-12
  • 修回日期:  2018-01-06
  • 刊出日期:  2018-03-20

Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响

  • 1. 河南师范大学物理与材料科学学院, 河南省光伏材料重点实验室, 新乡 453007
  • 通信作者: 宋桂林, guilinyichen@163.com
    基金项目: 

    国家自然科学基金(批准号:11504093,U1304518)、河南省基础和前沿技术研究项目(批准号:162300410086)、河南省高等教育重点研究项目(批准号:18A140022)和河南师范大学博士启动项目(批准号:qd16173)赞助的课题.

摘要: 采用固相反应法制备Sm1-xCaxFeO3(x=0,0.1,0.2,0.3)样品,研究Ca2+掺杂对SmFeO3介电性能、铁磁性及磁相变温度的影响.X射线衍射图谱分析表明:所有样品的主衍射峰与SmFeO3相符合且具有良好的晶体结构.随着x的增加,SmFeO3样品的晶粒尺寸由原来的0.5 μm逐渐增大到2 μm.当f=1 kHz时,Sm1-xCaxFeO3(x=0.1,0.2,0.3)样品的εr分别是SmFeO3的5倍、3倍和2.6倍,而tg σ增大一个数量级.在3 T磁场作用下,SmFeO3样品的M-H呈线性,随着x的增加,M-H逐渐趋向饱和,Sm1-xCaxFeO3(x=0.1,0.2,0.3)样品的Mr分别是SmFeO3的20倍、31倍和68倍.X射线光电子能谱分析表明:Fe2+和Fe3+共存于Sm1-xCaxFeO3样品中,Fe2+/Fe3+比例随着x的增加而增大,证明Ca2+掺杂增加了Fe2+的含量,形成Fe2+–O2-–Fe3+超交换作用,增强SmFeO3的铁磁特性.测量了Sm1-xCaxFeO3样品在外加磁场为1000 Oe(1 Oe=79.5775 A/m)的M-T变化关系,观测到其自旋重组温度(TSR)和尼尔温度(TN)分别为438 K和687 K,发现SmFeO3样品的TSR和TN均随着x的增加向低温方向移动,当x=0.3时,自旋重组现象消失.这主要是SmFeO3样品磁结构的稳定性和Fe3+–O2-–Fe3+及Sm3+–O2-–Fe3+超交换三者共同作用的结果.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回