搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

构造纠缠目击的一般方法

杨莹 曹怀信

构造纠缠目击的一般方法

杨莹, 曹怀信
PDF
导出引用
导出核心图
  • 量子纠缠作为量子通信和量子计算过程中不可缺少的资源,在量子信息领域中有着广泛的应用.如何判定一个给定的量子态是否为纠缠态仍然是一个重要的课题.纠缠目击是一种特殊的自伴算子,它可以用来判断一个量子态是否为纠缠态.本文首先从纠缠目击的定义入手,给出构造纠缠目击的一般方法,证明了当一个可测量A在可分纯态上的最大期望CA严格小于它的最大特征值max(A)时,对任何满足条件CA C (A)的参数C,算子WC=CI-A都是一个纠缠目击;然后,作为应用得到了利用图态的稳定子构造纠缠目击的一系列方法.
      通信作者: 曹怀信, caohx@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11371012,11601300,11571213,11771009)和中央高校基本科研业务费专项资金(批准号:GK201703093)资助的课题.
    [1]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [3]

    Steane A 1998 Rep. Prog. Phys. 61 117

    [4]

    Mattle K, Weinfurter H, Kwiat P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656

    [5]

    Hillery M, Buvek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [6]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [7]

    Sheng Y B, Zhou L 2017 Sci. Bull. 62 1025

    [8]

    Deng F G, Ren B C, Li X H 2017 Sci. Bull. 62 46

    [9]

    Cong M Y, Yang J, Huang Y X 2016 Acta Phys. Sin. 65 170301 (in Chinese) [丛美艳, 杨晶, 黄燕霞 2016 物理学报 65 170301]

    [10]

    Ren B C, Deng F G 2015 Acta Phys. Sin. 64 160303 (in Chinese) [任宝藏, 邓富国 2015 物理学报 64 160303]

    [11]

    Zong X L, Yang M 2016 Acta Phys. Sin. 65 080303 (in Chinese) [宗晓岚, 杨名 2016 物理学报 65 080303]

    [12]

    Yang F, Cong S 2011 Chin. J. Quant. Elect. 28 391 (in Chinese) [杨霏, 丛爽 2011 量子电子学报 28 391]

    [13]

    Lewenstein M, Kraus B, Cirac J I, Horodecki P 2000 Phys. Rev. A 62 052310

    [14]

    Lewenstein M, Kraus B, Horodecki P, Cirac J I 2001 Phys. Rev. A 63 044304

    [15]

    Tth G, Ghne O 2005 Phys. Rev. Lett. 94 060501

    [16]

    Ghne O, Hyllus P, Bruss D, Ekert A, Lewenstein M, Macchiavello C, Sanpera A 2002 Phys. Rev. A 66 062305

    [17]

    Tth G 2004 Phys. Rev. A 69 052327

    [18]

    Brukner C, Vedral V, Zeilinger A 2006 Phys. Rev. A 73 012110

    [19]

    Wu L A, Bandyopadhyay S, Sarandy M S, Lidar D A 2005 Phys. Rev. A 72 032309

    [20]

    Tth G, Ghne O 2005 Phys. Rev. A 72 022340

    [21]

    Doherty A C, Parrilo P A, Spedalieri F M 2005 Phys. Rev. A 71 032333

    [22]

    Vianna R O, Doherty A C 2006 Phys. Rev. A 74 052306

    [23]

    Jafarizadeh M A, Rezaee M, Yagoobi S K A S 2005 Phys. Rev. A 72 062106

    [24]

    Jafarizadeh M A, Rezaee M, Ahadpour S 2006 Phys. Rev. A 74 042335

    [25]

    Jafarizadeh M A, Najarbashi G, Habibian H 2007 Phys. Rev. A 75 052326

    [26]

    Jafarizadeh M A, Sufiani R, Nami S, Golmohammadi M 2012 Quantum. Inf. Process. 11 729

    [27]

    Cheng S, Chen J, Wang L 2017 Physics 46 416 (in Chinese) [程嵩, 陈靖, 王磊 2017 物理 46 416]

    [28]

    Deng D L, Li X P, Sarma S D 2017 Phys. Rev. X 7 021021

    [29]

    Levine Y, Yakira D, Cohen N, Shashua A 2017 arXiv: 1704.01552

    [30]

    Carleo G, Troyer M 2017 Science 355 602

    [31]

    Gao X, Duan L M 2017 Nature Commun. 8 662

    [32]

    Tth G, Ghne O, Briegel H J 2005 Phys. Rev. Lett. 95 120405

    [33]

    Hein M, Eisert J, Briegel H J 2003 Phys. Rev. A 69 062311

  • [1]

    Bennett C H, Brassard G, Crpeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [3]

    Steane A 1998 Rep. Prog. Phys. 61 117

    [4]

    Mattle K, Weinfurter H, Kwiat P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656

    [5]

    Hillery M, Buvek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [6]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [7]

    Sheng Y B, Zhou L 2017 Sci. Bull. 62 1025

    [8]

    Deng F G, Ren B C, Li X H 2017 Sci. Bull. 62 46

    [9]

    Cong M Y, Yang J, Huang Y X 2016 Acta Phys. Sin. 65 170301 (in Chinese) [丛美艳, 杨晶, 黄燕霞 2016 物理学报 65 170301]

    [10]

    Ren B C, Deng F G 2015 Acta Phys. Sin. 64 160303 (in Chinese) [任宝藏, 邓富国 2015 物理学报 64 160303]

    [11]

    Zong X L, Yang M 2016 Acta Phys. Sin. 65 080303 (in Chinese) [宗晓岚, 杨名 2016 物理学报 65 080303]

    [12]

    Yang F, Cong S 2011 Chin. J. Quant. Elect. 28 391 (in Chinese) [杨霏, 丛爽 2011 量子电子学报 28 391]

    [13]

    Lewenstein M, Kraus B, Cirac J I, Horodecki P 2000 Phys. Rev. A 62 052310

    [14]

    Lewenstein M, Kraus B, Horodecki P, Cirac J I 2001 Phys. Rev. A 63 044304

    [15]

    Tth G, Ghne O 2005 Phys. Rev. Lett. 94 060501

    [16]

    Ghne O, Hyllus P, Bruss D, Ekert A, Lewenstein M, Macchiavello C, Sanpera A 2002 Phys. Rev. A 66 062305

    [17]

    Tth G 2004 Phys. Rev. A 69 052327

    [18]

    Brukner C, Vedral V, Zeilinger A 2006 Phys. Rev. A 73 012110

    [19]

    Wu L A, Bandyopadhyay S, Sarandy M S, Lidar D A 2005 Phys. Rev. A 72 032309

    [20]

    Tth G, Ghne O 2005 Phys. Rev. A 72 022340

    [21]

    Doherty A C, Parrilo P A, Spedalieri F M 2005 Phys. Rev. A 71 032333

    [22]

    Vianna R O, Doherty A C 2006 Phys. Rev. A 74 052306

    [23]

    Jafarizadeh M A, Rezaee M, Yagoobi S K A S 2005 Phys. Rev. A 72 062106

    [24]

    Jafarizadeh M A, Rezaee M, Ahadpour S 2006 Phys. Rev. A 74 042335

    [25]

    Jafarizadeh M A, Najarbashi G, Habibian H 2007 Phys. Rev. A 75 052326

    [26]

    Jafarizadeh M A, Sufiani R, Nami S, Golmohammadi M 2012 Quantum. Inf. Process. 11 729

    [27]

    Cheng S, Chen J, Wang L 2017 Physics 46 416 (in Chinese) [程嵩, 陈靖, 王磊 2017 物理 46 416]

    [28]

    Deng D L, Li X P, Sarma S D 2017 Phys. Rev. X 7 021021

    [29]

    Levine Y, Yakira D, Cohen N, Shashua A 2017 arXiv: 1704.01552

    [30]

    Carleo G, Troyer M 2017 Science 355 602

    [31]

    Gao X, Duan L M 2017 Nature Commun. 8 662

    [32]

    Tth G, Ghne O, Briegel H J 2005 Phys. Rev. Lett. 95 120405

    [33]

    Hein M, Eisert J, Briegel H J 2003 Phys. Rev. A 69 062311

  • [1] 梁建武, 程资, 石金晶, 郭迎. 基于量子图态的量子秘密共享. 物理学报, 2016, 65(16): 160301. doi: 10.7498/aps.65.160301
    [2] 田宇玲, 冯田峰, 周晓祺. 基于冗余图态的多人协作量子计算. 物理学报, 2019, 68(11): 110302. doi: 10.7498/aps.68.20190142
    [3] 吴向艳, 徐艳玲, 於亚飞, 张智明. 利用非稳定子态容错实现密集旋转操作. 物理学报, 2014, 63(22): 220304. doi: 10.7498/aps.63.220304
    [4] 徐健, 陈小余, 李海涛. 多进制量子图态纠缠的确定 . 物理学报, 2012, 61(22): 220304. doi: 10.7498/aps.61.220304
    [5] 肖芳英, 陈汉武. 量子稳定子码的差错纠正与译码网络构建. 物理学报, 2011, 60(8): 080303. doi: 10.7498/aps.60.080303
    [6] 朱栋培, 阮图南, 石名俊, 杜江峰. 混合纠缠态的几何描述. 物理学报, 2000, 49(10): 1912-1918. doi: 10.7498/aps.49.1912
    [7] 朱栋培, 石名俊, 杜江峰. 量子纯态的纠缠度. 物理学报, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [8] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态. 物理学报, 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [9] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆. 物理学报, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [10] 夏云杰, 高德营. 纠缠相干态及其非经典特性. 物理学报, 2007, 56(7): 3703-3708. doi: 10.7498/aps.56.3703
    [11] 李体俊. 纠缠态投影算符的积分. 物理学报, 2009, 58(6): 3665-3669. doi: 10.7498/aps.58.3665
    [12] 曲照军, 马晓光, 徐秀玮, 杨传路. 可控三模纠缠相干态的产生. 物理学报, 2012, 61(3): 034206. doi: 10.7498/aps.61.034206
    [13] 丁东, 何英秋, 闫凤利, 高亭. 六光子超纠缠态制备方案. 物理学报, 2015, 64(16): 160301. doi: 10.7498/aps.64.160301
    [14] 路洪, 佘卫龙, 陶孟仙. 增加光子纠缠相干态的统计性质. 物理学报, 2002, 51(9): 1996-2001. doi: 10.7498/aps.51.1996
    [15] 戴玲玉, 郑亦庄, 郭光灿. 三粒子纠缠W态的隐形传态. 物理学报, 2003, 52(11): 2678-2682. doi: 10.7498/aps.52.2678
    [16] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送. 物理学报, 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [17] 向少华, 宋克慧. 噪声环境中两粒子纠缠态的纠缠消相干. 物理学报, 2006, 55(2): 529-534. doi: 10.7498/aps.55.529
    [18] 左战春, 夏云杰. Tavis-Cummings模型中三体纠缠态纠缠量的演化特性. 物理学报, 2003, 52(11): 2687-2693. doi: 10.7498/aps.52.2687
    [19] 向少华, 杨 雄, 宋克慧. 推广的Jaynes-Cummings模型中原子纠缠的时间演化和热纠缠态. 物理学报, 2004, 53(5): 1289-1292. doi: 10.7498/aps.53.1289
    [20] 戴宏毅, 陈平形, 梁林梅, 李承祖. 利用Λ型原子与光场的纠缠态传送腔场的奇偶相干态的叠加态. 物理学报, 2004, 53(2): 441-444. doi: 10.7498/aps.53.441
  • 引用本文:
    Citation:
计量
  • 文章访问数:  683
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-10
  • 修回日期:  2018-01-03
  • 刊出日期:  2018-04-05

构造纠缠目击的一般方法

  • 1. 陕西师范大学数学与信息科学学院, 西安 710119;
  • 2. 运城学院数学与信息技术学院, 运城 044000
  • 通信作者: 曹怀信, caohx@snnu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11371012,11601300,11571213,11771009)和中央高校基本科研业务费专项资金(批准号:GK201703093)资助的课题.

摘要: 量子纠缠作为量子通信和量子计算过程中不可缺少的资源,在量子信息领域中有着广泛的应用.如何判定一个给定的量子态是否为纠缠态仍然是一个重要的课题.纠缠目击是一种特殊的自伴算子,它可以用来判断一个量子态是否为纠缠态.本文首先从纠缠目击的定义入手,给出构造纠缠目击的一般方法,证明了当一个可测量A在可分纯态上的最大期望CA严格小于它的最大特征值max(A)时,对任何满足条件CA C (A)的参数C,算子WC=CI-A都是一个纠缠目击;然后,作为应用得到了利用图态的稳定子构造纠缠目击的一系列方法.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回