搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高频激光脉宽对原子光电子发射谱的影响

郭晶 郭福明 陈基根 杨玉军

高频激光脉宽对原子光电子发射谱的影响

郭晶, 郭福明, 陈基根, 杨玉军
PDF
导出引用
导出核心图
  • 采用广义含时伪谱方法数值求解原子在激光脉冲作用下的动量空间含时薛定谔方程,研究了高频激光脉宽对原子光电子发射谱的影响.数值模拟表明,随着激光脉冲宽度的增加,光电子谱干涉结构的振荡幅值逐渐减小,其最大峰值的强度和位置取决于产生有效电离的最大即时强度.通过分析光电子谱的变化规律能进一步加深对高频强场电离产生的动力学干涉效应的理解.
      通信作者: 杨玉军, yangyj@jlu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA0403300)、国家自然科学基金(批准号:11774129,11274141,11627807,11534004)和吉林省自然科学基金(批准号:20170101153JC)资助的课题.
    [1]

    Ferray M A, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31

    [2]

    Mcpherson A, Gibson G, Jara H, Johann U, Luk T S, Mcintyre I A, Boyer K, Rhodhes C K 1987 J. Opt. Soc. Am. B 4 595

    [3]

    Dromey B, Zepf M, Gopal A, Lancaster K 2006 Nat. Phys. 2 456

    [4]

    Niu Y, Liu F Y, Liu Y, Liang H J 2017 Opt. Commun. 397 118

    [5]

    Song Y, Li S Y, Liu X H, Guo F M, Yang Y J 2013 Phys. Rev. A 88 053419

    [6]

    Ackermann W, Asova G, Ayvazyan V 2007 Nat. Photon. 1 336

    [7]

    Tsumoru S, Hitoshi T 2008 Nat. Photon. 2 555

    [8]

    Emma P, Akre R, Arthur J 2010 Nat. Photon. 4 641

    [9]

    Huang Z, Brachmann A, Decker F J 2010 Physical Review Special Topics-Accelerators and Beams 13 020703

    [10]

    Allaria E, Appio R 2012 Nat. Photon. 6 699

    [11]

    Tetsuya I, Hideki A 2012 Nat. Photon. 6 540

    [12]

    Treusch R, Feldhaus J 2010 New J. Phys. 12 035015

    [13]

    Fang L, Osipov T, Murphy B F, Rudenko A 2014 J. Phys. B: At. Mol. Opt. Phys. 47 124006

    [14]

    Minitti M P, Budarz J M 2015 Phys. Rev. Lett. 114 255501

    [15]

    Kyung T K, Villeneuve D M, Corkum P B 2014 Nature Photon. 8 187

    [16]

    Franck L, Misha Y I 2008 Science 322 1232

    [17]

    Goulielmakis E, Yakovlev V S, Cavalieri A L 2007 Science 317 769

    [18]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J 2008 Science 320 1614

    [19]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [20]

    Meyer M, Cubaynes D, Richardson V, Costello J T 2010 Phys. Rev. Lett. 104 213001

    [21]

    Hishikawa A, Fushitani M, Hikosaka Y 2011 Phys. Rev. Lett. 107 243003

    [22]

    Fang L, Hoener M, Gessner O, Tarantelli F 2010 Phys. Rev. Lett. 105 083004

    [23]

    Iablonskyi D, Ueda K, Kenichi L I 2017 Phys. Rev. Lett. 119 073203

    [24]

    Antonio P, Phay J H, Gilles D, Stephen H S 2013 New J. Phy. 15 083057

    [25]

    Zhou Z Y, Yuan J M 2008 Phys. Rev. A 77 063411

    [26]

    Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389

    [27]

    Cui X, Li S Y, Guo F M, Tian Y Y, Chen J G, Zeng S L, Yang Y J 2015 Acta Phys. Sin. 64 043201 (in Chinese) [崔鑫, 李苏宇, 郭福明, 田原野, 陈基根, 曾思良, 杨玉军 2015 物理学报 64 043201]

    [28]

    Wei S S, Li S Y, Guo F M, Yang Y J, Wang B B 2013 Phys. Rev. A 87 063418

    [29]

    Hertz H 1887 Annalen der Physik 267 983

    [30]

    Einstein A 1905 Annalen der Physik 322 132

    [31]

    Tian Y Y, Wei S S, Guo F M, Yang Y J 2013 Acta Phys. Sin. 62 113201 (in Chinese) [田原野, 魏珊珊, 郭福明, 李苏宇, 杨玉军 2013 物理学报 62 113201]

    [32]

    Becker W, Grasbon F, Kopold R, Milosevic D B, Paulus G G, Walther H 2002 Advances in Atomic, Molecular and Optical Physics 48 35

    [33]

    Zhou Z Y, Chu S I 2011 Phys. Rev. A 83 013405

    [34]

    Philipp V D, Lorenz S C 2012 Phys. Rev. Lett. 108 253001

    [35]

    Mehrdad B, Ulf S, Jan M R 2017 Phys. Rev. Lett. 118 143202

    [36]

    Aleksander S S, Tor K, Eva L 2016 Phys. Rev. A 93 053411

    [37]

    Sun F, Wei D, Zhang G Z, Ding X, Yao J Q 2016 Chin. Phys. Lett. 33 123202

    [38]

    Zhang S B, Nina R 2014 Phys. Rev. A 89 013407

    [39]

    Yu C, Fu N, Hu T, Zhang G Z, Yao J Q 2013 Phys. Rev. A 88 043408

    [40]

    Philipp V D, Lorenz S C 2013 Phys. Rev. A 88 043414

    [41]

    Yu C, Fu N, Hu T, Zhang G Z, Yao J Q 2013 Phys. Rev. A 87 043405

    [42]

    Tian Y Y, Wei S S, Guo F M, Yang Y J 2014 Chin. Phys. B 23 053202

    [43]

    Zhang D Y, Li Q Y, Guo F M, Yang Y J 2016 Acta Phys. Sin. 65 223202 (in Chinese) [张頔玉, 李庆仪, 郭福明, 杨玉军 2016 物理学报 65 223202]

    [44]

    Landau R H 1993 Phys. Rev. C 48 3047

  • [1]

    Ferray M A, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31

    [2]

    Mcpherson A, Gibson G, Jara H, Johann U, Luk T S, Mcintyre I A, Boyer K, Rhodhes C K 1987 J. Opt. Soc. Am. B 4 595

    [3]

    Dromey B, Zepf M, Gopal A, Lancaster K 2006 Nat. Phys. 2 456

    [4]

    Niu Y, Liu F Y, Liu Y, Liang H J 2017 Opt. Commun. 397 118

    [5]

    Song Y, Li S Y, Liu X H, Guo F M, Yang Y J 2013 Phys. Rev. A 88 053419

    [6]

    Ackermann W, Asova G, Ayvazyan V 2007 Nat. Photon. 1 336

    [7]

    Tsumoru S, Hitoshi T 2008 Nat. Photon. 2 555

    [8]

    Emma P, Akre R, Arthur J 2010 Nat. Photon. 4 641

    [9]

    Huang Z, Brachmann A, Decker F J 2010 Physical Review Special Topics-Accelerators and Beams 13 020703

    [10]

    Allaria E, Appio R 2012 Nat. Photon. 6 699

    [11]

    Tetsuya I, Hideki A 2012 Nat. Photon. 6 540

    [12]

    Treusch R, Feldhaus J 2010 New J. Phys. 12 035015

    [13]

    Fang L, Osipov T, Murphy B F, Rudenko A 2014 J. Phys. B: At. Mol. Opt. Phys. 47 124006

    [14]

    Minitti M P, Budarz J M 2015 Phys. Rev. Lett. 114 255501

    [15]

    Kyung T K, Villeneuve D M, Corkum P B 2014 Nature Photon. 8 187

    [16]

    Franck L, Misha Y I 2008 Science 322 1232

    [17]

    Goulielmakis E, Yakovlev V S, Cavalieri A L 2007 Science 317 769

    [18]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J 2008 Science 320 1614

    [19]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [20]

    Meyer M, Cubaynes D, Richardson V, Costello J T 2010 Phys. Rev. Lett. 104 213001

    [21]

    Hishikawa A, Fushitani M, Hikosaka Y 2011 Phys. Rev. Lett. 107 243003

    [22]

    Fang L, Hoener M, Gessner O, Tarantelli F 2010 Phys. Rev. Lett. 105 083004

    [23]

    Iablonskyi D, Ueda K, Kenichi L I 2017 Phys. Rev. Lett. 119 073203

    [24]

    Antonio P, Phay J H, Gilles D, Stephen H S 2013 New J. Phy. 15 083057

    [25]

    Zhou Z Y, Yuan J M 2008 Phys. Rev. A 77 063411

    [26]

    Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389

    [27]

    Cui X, Li S Y, Guo F M, Tian Y Y, Chen J G, Zeng S L, Yang Y J 2015 Acta Phys. Sin. 64 043201 (in Chinese) [崔鑫, 李苏宇, 郭福明, 田原野, 陈基根, 曾思良, 杨玉军 2015 物理学报 64 043201]

    [28]

    Wei S S, Li S Y, Guo F M, Yang Y J, Wang B B 2013 Phys. Rev. A 87 063418

    [29]

    Hertz H 1887 Annalen der Physik 267 983

    [30]

    Einstein A 1905 Annalen der Physik 322 132

    [31]

    Tian Y Y, Wei S S, Guo F M, Yang Y J 2013 Acta Phys. Sin. 62 113201 (in Chinese) [田原野, 魏珊珊, 郭福明, 李苏宇, 杨玉军 2013 物理学报 62 113201]

    [32]

    Becker W, Grasbon F, Kopold R, Milosevic D B, Paulus G G, Walther H 2002 Advances in Atomic, Molecular and Optical Physics 48 35

    [33]

    Zhou Z Y, Chu S I 2011 Phys. Rev. A 83 013405

    [34]

    Philipp V D, Lorenz S C 2012 Phys. Rev. Lett. 108 253001

    [35]

    Mehrdad B, Ulf S, Jan M R 2017 Phys. Rev. Lett. 118 143202

    [36]

    Aleksander S S, Tor K, Eva L 2016 Phys. Rev. A 93 053411

    [37]

    Sun F, Wei D, Zhang G Z, Ding X, Yao J Q 2016 Chin. Phys. Lett. 33 123202

    [38]

    Zhang S B, Nina R 2014 Phys. Rev. A 89 013407

    [39]

    Yu C, Fu N, Hu T, Zhang G Z, Yao J Q 2013 Phys. Rev. A 88 043408

    [40]

    Philipp V D, Lorenz S C 2013 Phys. Rev. A 88 043414

    [41]

    Yu C, Fu N, Hu T, Zhang G Z, Yao J Q 2013 Phys. Rev. A 87 043405

    [42]

    Tian Y Y, Wei S S, Guo F M, Yang Y J 2014 Chin. Phys. B 23 053202

    [43]

    Zhang D Y, Li Q Y, Guo F M, Yang Y J 2016 Acta Phys. Sin. 65 223202 (in Chinese) [张頔玉, 李庆仪, 郭福明, 杨玉军 2016 物理学报 65 223202]

    [44]

    Landau R H 1993 Phys. Rev. C 48 3047

  • [1] 宋文娟, 郭福明, 陈基根, 杨玉军. 双色高频激光作用下原子低阶次谐波的理论研究. 物理学报, 2018, 67(3): 033201. doi: 10.7498/aps.67.20172129
    [2] 黎明, 杨兴繁, 许州, 束小建, 鲁向阳, 黄文会, 王汉斌, 窦玉焕, 沈旭明, 单李军, 邓德荣, 徐勇, 柏伟, 冯第超, 吴岱, 肖德鑫, 王建新, 罗星, 周奎, 劳成龙, 闫陇刚, 林司芬, 张鹏, 张浩, 和天慧, 潘清, 李相坤, 李鹏, 刘宇, 杨林德, 刘婕, 张德敏, 李凯, 陈亚男. 太赫兹自由电子激光的受激饱和实验. 物理学报, 2018, 67(8): 084102. doi: 10.7498/aps.67.20172413
    [3] 崔鑫, 李苏宇, 郭福明, 田原野, 陈基根, 曾思良, 杨玉军. 高频激光脉冲作用下原子的光子和光电子发射. 物理学报, 2015, 64(4): 043201. doi: 10.7498/aps.64.043201
    [4] 唐贵德, 李壮志, 马丽, 吴光恒, 胡凤霞. 典型磁性材料价电子结构研究面临的机遇与挑战. 物理学报, 2020, 69(2): 027501. doi: 10.7498/aps.69.20191655
    [5] 王 潜, 徐金强, 武 锦, 李永贵. 利用扫描近场红外显微镜对化学样品组分进行成像研究. 物理学报, 2003, 52(2): 298-301. doi: 10.7498/aps.52.298
    [6] 文双春. 新型Wiggler谐波自由电子激光. 物理学报, 1997, 46(2): 272-278. doi: 10.7498/aps.46.272
    [7] 赵东焕, 雷仕湛. 自由电子激光辐射场的经典理论分析. 物理学报, 1996, 45(2): 192-200. doi: 10.7498/aps.45.192
    [8] 刘盛纲, 孙雁. 渡越辐射自由电子激光中自发辐射与受激辐射的关系. 物理学报, 1988, 37(9): 1505-1509. doi: 10.7498/aps.37.1505
    [9] 顾小卫. 带光速调管的高增益高次谐波振荡器自由电子激光模拟. 物理学报, 2013, 62(9): 094102. doi: 10.7498/aps.62.094102
    [10] 杨中海, 彭良福, 刘盛纲. 改型wiggler高次谐波自由电子激光的非线性理论分析. 物理学报, 1995, 44(7): 1064-1072. doi: 10.7498/aps.44.1064
    [11] 陈艳, 董国胜, 张明, 金晓峰, 范朝阳, 陆尔东, 潘海斌, 徐彭寿, 张新夷. Mn/GaAs(100)界面电子结构的同步辐射光电子能谱研究. 物理学报, 1995, 44(1): 145-151. doi: 10.7498/aps.44.145
    [12] 何少龙, 李宏年, 王晓雄, 李海洋, I. Kurash, 钱海杰, 苏 润, M. I. Abbas, 钟 俊, 洪才浩. Yb2.75C60同步辐射光电子能谱. 物理学报, 2005, 54(3): 1400-1405. doi: 10.7498/aps.54.1400
    [13] 王国栋, 张 旺, 张文华, 李宗木, 徐法强. Fe/ZnO(0001)界面的同步辐射光电子能谱研究. 物理学报, 2007, 56(6): 3468-3472. doi: 10.7498/aps.56.3468
    [14] 徐世宏, 徐彭寿, 班大雁, 方容川, 杨风源, 袁诗鑫. Ge/ZnSe(100)异质结能带偏移的同步辐射光电子能谱研究. 物理学报, 1997, 46(3): 587-595. doi: 10.7498/aps.46.587
    [15] 陆尔东, 徐世宏, 徐彭寿, 班大雁, 方容川, 薛剑耿. Si/ZnS极性界面能带偏移的同步辐射光电子能谱研究. 物理学报, 1997, 46(9): 1817-1825. doi: 10.7498/aps.46.1817
    [16] 李宏年, 徐亚伯, 鲍世宁, 李海洋, 何丕模, 钱海杰, 刘凤琴, 易·奎热西. C60单晶价带色散的同步辐射光电子谱研究. 物理学报, 2000, 49(6): 1144-1147. doi: 10.7498/aps.49.1144
    [17] 赵东焕. 自由电子激光中电子与辐射波相互作用有效时间的分析. 物理学报, 1996, 45(4): 573-579. doi: 10.7498/aps.45.573
    [18] 祝家清. 自由电子激光的能量转换. 物理学报, 1996, 45(1): 52-57. doi: 10.7498/aps.45.52
    [19] 李治宽. 自由电子激光的准Dirac方程. 物理学报, 1997, 46(7): 1349-1353. doi: 10.7498/aps.46.1349
    [20] 张毅波. 切伦科夫自由电子激光中自发辐射与受激辐射的关系. 物理学报, 1987, 36(10): 1344-1348. doi: 10.7498/aps.36.1344
  • 引用本文:
    Citation:
计量
  • 文章访问数:  473
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-01
  • 修回日期:  2018-01-01
  • 刊出日期:  2018-04-05

高频激光脉宽对原子光电子发射谱的影响

  • 1. 吉林大学原子与分子物理研究所, 长春 130012;
  • 2. 吉林省应用原子与分子光谱重点实验室, 长春 130012;
  • 3. 台州学院物理与电子工程学院物理与材料工程系, 台州 318000
  • 通信作者: 杨玉军, yangyj@jlu.edu.cn
    基金项目: 

    国家重点研发计划(批准号:2017YFA0403300)、国家自然科学基金(批准号:11774129,11274141,11627807,11534004)和吉林省自然科学基金(批准号:20170101153JC)资助的课题.

摘要: 采用广义含时伪谱方法数值求解原子在激光脉冲作用下的动量空间含时薛定谔方程,研究了高频激光脉宽对原子光电子发射谱的影响.数值模拟表明,随着激光脉冲宽度的增加,光电子谱干涉结构的振荡幅值逐渐减小,其最大峰值的强度和位置取决于产生有效电离的最大即时强度.通过分析光电子谱的变化规律能进一步加深对高频强场电离产生的动力学干涉效应的理解.

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回