搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

窄线宽脉冲光纤激光的自相位调制预补偿研究

粟荣涛 肖虎 周朴 王小林 马阎星 段磊 吕品 许晓军

引用本文:
Citation:

窄线宽脉冲光纤激光的自相位调制预补偿研究

粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军

Self-phase modulation pre-compensation of narrowlinewidth pulsed fiber lasers

Su Rong-Tao, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Ma Yan-Xing, Duan Lei, Lü Pin, Xu Xiao-Jun
PDF
导出引用
  • 自相位调制(SPM)效应会展宽窄线宽脉冲光纤激光的光谱宽度,降低其相干性.通过相位调制对SPM引起的非线性相移进行预补偿,能够使脉冲激光在光纤中进行放大和传输后保持种子激光的光谱特性.基于三波耦合方程开展数值仿真,研究了在对SPM进行“欠补偿”,“完全补偿”和“过补偿”的情况下,SPM预补偿对受激布里渊散射阈值和激光光谱特性的影响.开展了SPM预补偿实验研究,将脉冲激光的光谱宽度从1.4 GHz压缩到120 MHz.研究内容可以为窄线宽脉冲光纤激光系统的设计搭建提供参考.
    High peak power, single frequency nanosecond fiber lasers have aroused the intense interest in their applications such as nonlinear frequency generation, LIDAR, and remote sensing. However, self-phase modulation (SPM) will induce a temporally dependent phase shift φNL (L, t)=|Ap (0, t)|2γLeff, where Ap is the amplitude of pump wave, γ is the nonlinear parameter, and Leff is the effective fiber length. The nonlinear phase shift will broaden the spectral linewidth of pulsed laser, which degrades the coherence of the laser and influences the performance of the laser. In order to obtain laser pulses with narrower linewidth, we can phase-modulate the pulsed laser with a value of-φNL(L,t). Thus, the SPM induced the nonlinear phase shift can be eliminated, and the spectra of pulsed laser can remain during the amplification and transmission in the fiber. Stimulated Brillouin scattering (SBS) has very low threshold and should be taken into consideration in narrow linewidth fiber lasers. The SBS threshold, which is dependent on the linewidth of laser, will be changed at the same time when the SPM is pre-compensated for. Because the SPM pre-compensation will change the linewidth of the pulsed laser. According to three coupled amplitude equations, we numerically analyze the influence of SPM pre-compensation on SBS threshold and spectral characteristics. The stimulation results show that in a master oscillator power amplifier structured fiber laser system, when SPM is completely compensated for (φM(t)=φNL(L,t)), the spectrum of the output pulsed laser can be maintained as that of the laser seed, but the SBS threshold usually decreases. When the SPM is compensated for incompletely (φM(t) φNL(L,t)), the spectral linewidth of the output laser cannot be compressed to that of the laser seed, and the SBS threshold in this situation is lower than the SBS threshold obtained when φM(t)=φNL(L,t). When the SPM is overcompensated for (φM(t) > φNL(L, t)), the spectral linewidth of the output laser cannot be compressed to that of the laser seed either, but the the SBS threshold in this situation is higher than the SBS threshold when φM(t)=φNL(L,t). We also build an experimental setup to verify the feasibility of SPM compensation. In our experiment, the linewidth of the pulsed laser is reduced from 1.4 GHz to 120 MHz when SPM is compensated for by phase modulation. The SBS threshold of the system are measured before and after SPM pre-compensation, and correctness of theoretical simulation is experimentally verified. This analysis method can provide the design guidelines for narrow-linewidth pulsed fiber laser systems.
      通信作者: 粟荣涛, surongtao@126.com
    • 基金项目: 国家重点研发计划(批准号:2017YFF0104603)、中国博士后科学基金(批准号:2017M620070)和国家自然科学基金(批准号:61705265,61705264)资助的课题.
      Corresponding author: Su Rong-Tao, surongtao@126.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFF0104603), the China Postdoctoral Science Foundation (Grant No. 2017M620070) and the National Natural Science Foundation of China (Grant Nos. 61705265, 61705264).
    [1]

    Liu Y, Liu J, Chen W 2011 Chin. Opt. Lett. 9 090604

    [2]

    Liu A, Norsen M A, Mead R D 2005 Opt. Lett. 30 67

    [3]

    Shi W, Leigh M A, Zong J, Yao Z, Nguyen D T, Chavez-Pirson A, Peyghambarian N 2009 IEEE J. Sel. Top. Quantum Electron. 15 377

    [4]

    Zhu X, Liu J, Bi D, Zhou J, Diao W, Chen W 2012 Chin. Opt. Lett. 10 012801

    [5]

    Zhang X, Diao W, Liu Y, Liu J, Hou X, Chen W 2015 Proc. SPIE 9255 925503

    [6]

    Jiang J, Chang J H, Feng S J, Mao Q H 2010 Acta Phys. Sin. 59 7892 (in Chinese) [蒋建, 常建华, 冯素娟, 毛庆和 2010 物理学报 59 7892]

    [7]

    Su R, Zhou P, Wang X, Zhang H, Xu X 2012 Opt. Lett. 37 3978

    [8]

    Geng J, Wang Q, Jiang Z, Luo T, Jiang S, Czarnecki G 2011 Opt. Lett. 36 2293

    [9]

    Shi W, Petersen E B, Nguyen D T, Yao Z, Chavez-Pirson A, Peyghambarian N, Yu J 2011 Opt. Lett. 36 3575

    [10]

    Fang Q, Shi W, Petersen E, Khanh K, Chavez-Pirson A, Peyghambarian N 2012 IEEE Photon. Technol. Lett. 24 353

    [11]

    Wu W, Ren T, Zhou J, Du S, Liu X 2012 Chin. Opt. Lett. 10 050604

    [12]

    Li P, Hu H, Yao Y, Chi J, Yang C, Zhao Z, Zhang G, Zhang M, Liang B, Ma C 2015 Proc. SPIE 9656 96560B

    [13]

    Wang X, Jin X, Zhou P, Wang X, Xiao H, Liu Z 2015 Opt. Express 23 4233

    [14]

    Su R, Zhou P, Wang X, Ma Y, Ma P, Xu X, Liu Z 2014 IEEE J. Sel. Top. Quantum Electron. 20 0903913

    [15]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photon. 2 1

    [16]

    Zhang L, Zhang D, Shi J, Shi J, Gong W, Liu D 2012 Appl. Phys. B 109 137

    [17]

    Chang L P, Guo S Q, Fan W, Xu H, Ren H L, Wang X C, Chen B 2010 Acta Opt. Sin. 30 1112 (in Chinese) [常丽萍, 郭淑琴, 范薇, 徐红, 任宏亮, 汪小超, 陈柏 2010 光学学报 30 1112]

    [18]

    Liu Y K, Wang X L, Su R T, Ma P F, Zhang H W, Zhou P, Si L 2017 Acta Phys. Sin. 66 234203 (in Chinese) [刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊 2017 物理学报 66 234203]

    [19]

    Wang X, Jin X, Wu W, Zhou P, Wang X, Xiao H, Liu Z 2015 IEEE Photon. Technol. Lett. 27 677

    [20]

    Perry M D, Ditmire T, Stuart B C 1994 Opt. Lett. 19 2149

    [21]

    Bao H, Gu M 2009 Opt. Lett. 34 148

    [22]

    Shi W, Petersen E B, Yao Z, Nguyen D T, Zong J, Stephen M A, Chavez-Pirson A, Peyghambarian N 2010 Opt. Lett. 35 2418

    [23]

    Su R T, Wang X L, Zhou P, Xu X J 2013 Laser Phys. Lett. 10 015105

    [24]

    Washburn B R, Buck J A, Ralph S E 2000 Opt. Lett. 25 445

    [25]

    Zaouter Y, Cormier E, Rigail P, Al E 2007 Proc. SPIE 6453 64530O

    [26]

    Munroe M J, Hamamoto M Y, Dutton D A 2009 Proc. SPIE 7195 71952N

    [27]

    Su R, Zhou P, Ma P, L H, Xu X 2013 Appl. Opt. 52 7331

    [28]

    Xu C, Mollenauer L, Liu X 2002 Electron. Lett. 38 1578

    [29]

    Agrawal G P 2013 Nonlinear Fiber Optics (Fifth Edition) (New York: Academic) pp370-372

    [30]

    Boyd R W, Rzyzewski K, Narum P 1990 Phys. Rev. A 49 5514

    [31]

    Hollenbeck D, Cantrell C D 2009 J. Lightwave Technol. 27 2140

    [32]

    Xu S, Li C, Zhang W, Mo S, Yang C, Wei X, Feng Z, Qian Q, Shen S, Peng M, Zhang Q, Yang Z 2013 Opt. Lett. 38 501

    [33]

    Xu S, Yang Z, Zhang W, Wei X, Qian Q, Chen D, Zhang Q, Shen S, Peng M, Qiu J 2011 Opt. Lett. 36 3708

    [34]

    Su R, Zhou P, Wang X, Xiao H, Xu X 2012 Chin. Opt. Lett. 10 111402

    [35]

    Su R, Zhou P, Wang X, L H, Xu X 2014 Opt. Commun. 316 86

  • [1]

    Liu Y, Liu J, Chen W 2011 Chin. Opt. Lett. 9 090604

    [2]

    Liu A, Norsen M A, Mead R D 2005 Opt. Lett. 30 67

    [3]

    Shi W, Leigh M A, Zong J, Yao Z, Nguyen D T, Chavez-Pirson A, Peyghambarian N 2009 IEEE J. Sel. Top. Quantum Electron. 15 377

    [4]

    Zhu X, Liu J, Bi D, Zhou J, Diao W, Chen W 2012 Chin. Opt. Lett. 10 012801

    [5]

    Zhang X, Diao W, Liu Y, Liu J, Hou X, Chen W 2015 Proc. SPIE 9255 925503

    [6]

    Jiang J, Chang J H, Feng S J, Mao Q H 2010 Acta Phys. Sin. 59 7892 (in Chinese) [蒋建, 常建华, 冯素娟, 毛庆和 2010 物理学报 59 7892]

    [7]

    Su R, Zhou P, Wang X, Zhang H, Xu X 2012 Opt. Lett. 37 3978

    [8]

    Geng J, Wang Q, Jiang Z, Luo T, Jiang S, Czarnecki G 2011 Opt. Lett. 36 2293

    [9]

    Shi W, Petersen E B, Nguyen D T, Yao Z, Chavez-Pirson A, Peyghambarian N, Yu J 2011 Opt. Lett. 36 3575

    [10]

    Fang Q, Shi W, Petersen E, Khanh K, Chavez-Pirson A, Peyghambarian N 2012 IEEE Photon. Technol. Lett. 24 353

    [11]

    Wu W, Ren T, Zhou J, Du S, Liu X 2012 Chin. Opt. Lett. 10 050604

    [12]

    Li P, Hu H, Yao Y, Chi J, Yang C, Zhao Z, Zhang G, Zhang M, Liang B, Ma C 2015 Proc. SPIE 9656 96560B

    [13]

    Wang X, Jin X, Zhou P, Wang X, Xiao H, Liu Z 2015 Opt. Express 23 4233

    [14]

    Su R, Zhou P, Wang X, Ma Y, Ma P, Xu X, Liu Z 2014 IEEE J. Sel. Top. Quantum Electron. 20 0903913

    [15]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photon. 2 1

    [16]

    Zhang L, Zhang D, Shi J, Shi J, Gong W, Liu D 2012 Appl. Phys. B 109 137

    [17]

    Chang L P, Guo S Q, Fan W, Xu H, Ren H L, Wang X C, Chen B 2010 Acta Opt. Sin. 30 1112 (in Chinese) [常丽萍, 郭淑琴, 范薇, 徐红, 任宏亮, 汪小超, 陈柏 2010 光学学报 30 1112]

    [18]

    Liu Y K, Wang X L, Su R T, Ma P F, Zhang H W, Zhou P, Si L 2017 Acta Phys. Sin. 66 234203 (in Chinese) [刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊 2017 物理学报 66 234203]

    [19]

    Wang X, Jin X, Wu W, Zhou P, Wang X, Xiao H, Liu Z 2015 IEEE Photon. Technol. Lett. 27 677

    [20]

    Perry M D, Ditmire T, Stuart B C 1994 Opt. Lett. 19 2149

    [21]

    Bao H, Gu M 2009 Opt. Lett. 34 148

    [22]

    Shi W, Petersen E B, Yao Z, Nguyen D T, Zong J, Stephen M A, Chavez-Pirson A, Peyghambarian N 2010 Opt. Lett. 35 2418

    [23]

    Su R T, Wang X L, Zhou P, Xu X J 2013 Laser Phys. Lett. 10 015105

    [24]

    Washburn B R, Buck J A, Ralph S E 2000 Opt. Lett. 25 445

    [25]

    Zaouter Y, Cormier E, Rigail P, Al E 2007 Proc. SPIE 6453 64530O

    [26]

    Munroe M J, Hamamoto M Y, Dutton D A 2009 Proc. SPIE 7195 71952N

    [27]

    Su R, Zhou P, Ma P, L H, Xu X 2013 Appl. Opt. 52 7331

    [28]

    Xu C, Mollenauer L, Liu X 2002 Electron. Lett. 38 1578

    [29]

    Agrawal G P 2013 Nonlinear Fiber Optics (Fifth Edition) (New York: Academic) pp370-372

    [30]

    Boyd R W, Rzyzewski K, Narum P 1990 Phys. Rev. A 49 5514

    [31]

    Hollenbeck D, Cantrell C D 2009 J. Lightwave Technol. 27 2140

    [32]

    Xu S, Li C, Zhang W, Mo S, Yang C, Wei X, Feng Z, Qian Q, Shen S, Peng M, Zhang Q, Yang Z 2013 Opt. Lett. 38 501

    [33]

    Xu S, Yang Z, Zhang W, Wei X, Qian Q, Chen D, Zhang Q, Shen S, Peng M, Qiu J 2011 Opt. Lett. 36 3708

    [34]

    Su R, Zhou P, Wang X, Xiao H, Xu X 2012 Chin. Opt. Lett. 10 111402

    [35]

    Su R, Zhou P, Wang X, L H, Xu X 2014 Opt. Commun. 316 86

  • [1] 冯云龙, 侯尚林, 雷景丽, 武刚, 晏祖勇. 声波导单模光纤中后向受激布里渊散射的声模分析. 物理学报, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [2] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [3] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器. 物理学报, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [4] 李雪健, 曹敏, 汤敏, 芈月安, 陶洪, 古皓, 任文华, 简伟, 任国斌. M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性. 物理学报, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [5] 粟荣涛, 张鹏飞, 周朴, 肖虎, 王小林, 段磊, 吕品, 许晓军. 窄线宽纳秒脉冲光纤拉曼放大器的理论模型和数值分析. 物理学报, 2018, 67(15): 154202. doi: 10.7498/aps.67.20172679
    [6] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [7] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究. 物理学报, 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [8] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟. 物理学报, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [9] 刘占军, 郝亮, 项江, 郑春阳. 激光聚变中受激布里渊散射的混合模拟研究. 物理学报, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [10] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [11] 王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君. 基于相位调制-解调的光纤激光相位噪声检测方法研究. 物理学报, 2011, 60(8): 084203. doi: 10.7498/aps.60.084203
    [12] 郑狄, 潘炜. 非线性光纤环镜在受激布里渊散射慢光级联系统中的可行性研究. 物理学报, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [13] 薛宇豪, 周军, 何兵, 李震, 漆云凤, 刘驰, 楼祺洪. 基于空间滤波的光纤激光被动相位锁定技术研究. 物理学报, 2010, 59(11): 7869-7874. doi: 10.7498/aps.59.7869
    [14] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法光纤激光相干合成的高精度相位控制系统. 物理学报, 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [15] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [16] 刘 娟, 白建辉, 倪 恺, 景红梅, 何兴道, 刘大禾. 受激布里渊散射对激光在水中衰减特性的影响. 物理学报, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [17] 郭少锋, 林文雄, 陆启生, 陈 燧, 林宗志, 邓少永, 朱永祥. 熔融石英玻璃受激布里渊散射效应实验研究. 物理学报, 2007, 56(4): 2218-2222. doi: 10.7498/aps.56.2218
    [18] 王雨雷, 吕志伟, 何伟明, 张 祎. 一种大能量受激布里渊散射相位共轭镜的研究. 物理学报, 2007, 56(2): 883-888. doi: 10.7498/aps.56.883
    [19] 吴国华, 郭 弘, 刘明伟, 邓冬梅, 刘时雄. 尾波场与相对论效应对激光脉冲自相位调制及频移影响的比较研究. 物理学报, 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
    [20] 吕志伟, 王晓慧, 林殿阳, 王 超, 赵晓彦, 汤秀章, 张海峰, 单玉生. KrF激光受激布里渊散射反射率稳定性的研究. 物理学报, 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
计量
  • 文章访问数:  5652
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-19
  • 修回日期:  2018-05-24
  • 刊出日期:  2019-08-20

/

返回文章
返回