搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在兴奋-抑制混沌神经元网络中有序波的自发形成

汪芃 李倩昀 黄志精 唐国宁

在兴奋-抑制混沌神经元网络中有序波的自发形成

汪芃, 李倩昀, 黄志精, 唐国宁
PDF
导出引用
导出核心图
  • 大脑皮层在一定条件下可以自发出现螺旋波和平面波,为了了解这些有序波的产生机制,构造了一个双层的二维神经元网络.该网络由最近邻兴奋性耦合和长程抑制性耦合层组成,采用修改后的Hindmarsh-Rose神经元模型研究了该混沌神经元网络从具有随机相位分布的初态演化是否能自发出现各种有序波.数值模拟结果表明:当抑制性耦合强度比较小时,系统一般不会自发出现有序波;在兴奋性耦合强度足够大的情况下,抑制性耦合强度越大,系统越容易产生有序波.系统出现不同的有序波与系统初态和耦合强度有密切关系,适当选择兴奋性和抑制性耦合的耦合强度,系统会自发出现迷宫斑图、平面波、单螺旋波、多螺旋波、旋转方向相反的螺旋波对、双臂螺旋波、靶波、向内方形波等有序波斑图.螺旋波、迷宫斑图和内向方形波出现概率分别达到27.5%,21.5%和10.0%,这里的迷宫斑图是由不同传播方向的许多平面波组成,其他有序波出现概率比较小.研究结果有助于理解发生在大脑皮层中的自组织现象.
      通信作者: 唐国宁, tangguoning@sohu.com
    • 基金项目: 国家自然科学基金(批准号:11565005,11365003,11747307)资助的课题.
    [1]

    Sato T K, Nauhaus I, Carandini M 2012 Neuron 75 218

    [2]

    Huang X Y, Xu W F, Liang J M, Takagaki K, Gao X, Wu J Y 2010 Neuron 68 978

    [3]

    Huang X Y, William C T, Yang Q, Ma H T, Carlo R L, Steven J S, Wu J Y 2004 J. Neurosci. 24 9897

    [4]

    Viventi J, Kim D H, Vigeland L, Frechette E S, Blanco J A, Kim Y S, Avrin A E, Tiruvadi V R, Hwang S W, Vanleer A C, Wulsin D F, Davis K, Gelber C E, Palmer L, Spiegel J V, Wu J, Xiao J L, Huang Y G, Contreras D, Rogers J A, Litt B 2011 Nat. Neurosci. 14 1599

    [5]

    Davidenko J M, Pertsov A V, Salomonsz, Baxter W, Jalife J 1992 Nature 355 349

    [6]

    Yu Y F, Santos L M, Mattiace L A, Costa M L, Ferreira L C, Benabou K, Kim A H, Abrahams J, Bennett M V L, Rozental R 2012 PNAS 109 2585

    [7]

    Wang Q Y, Perc M, Duan Z S, Chen G R 2008 Phys. Lett. A 372 5681

    [8]

    Ma J, Huang L, Ying H P, Pu Z S 2012 Chin. Sci. Bull. 57 2094

    [9]

    Gu H G, Jia B, Li Y Y, Chen G R 2013 Physica A 392 1361

    [10]

    Hu B, Ma J, Tang J 2013 PloS One 8 e0069251

    [11]

    Qin H X, Ma J, Wang C N, Chu R T 2014 Sci. China:Phys. Mech. Astron. 57 1918

    [12]

    Ma J, Tang J 2015 Sci. China:Tech. Sci. 58 2038

    [13]

    Yao Y G, Deng H Y, Ma C Z, Yi M, Ma J 2017 PloS One 12 e0171273

    [14]

    Yao Y G, Deng H Y, Ma C Z, Yi M, Ma J 2017 Scientific Reports 7 43151

    [15]

    Jung P, Cornell-Bell A, Madden K S, Moss F 1998 J. Neurophysiol. 79 1098

    [16]

    Ma J, Wu Y, Ying H P, Jia Y 2011 Chin. Sci. Bull. 56 151

    [17]

    Wang C N, Ma J, Hu B L, Jin W Y 2015 Int. J. Mod. Phys. B 29 1550043

    [18]

    Wang P, Li Q Y, Tang G N 2018 Acta Phys. Sin. 67 030502 (in Chinese)[汪芃, 李倩昀, 唐国宁 2018 物理学报 67 030502]

    [19]

    Fohlmeister C, Gerstner W, Ritz R, Hemmen J L 1995 Neural Comput. 7 905

    [20]

    Xiao W W, Gu H G, Liu M R 2016 Sci. China:Tech. Sci. 59 1943

    [21]

    Tao Y, Gu H G 2017 Int. J. Mod. Phys. B 31 1750179

    [22]

    Okun M, Lampl I 2008 Nat. Neurosci. 11 535

    [23]

    Soriano J, Martínez M R, Tlusty T, Moses E 2008 PNAS 105 13758

    [24]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond. B 221 87

    [25]

    Adhikari B M, Prasad A, Dhamala M 2011 Chaos 21 023116

  • [1]

    Sato T K, Nauhaus I, Carandini M 2012 Neuron 75 218

    [2]

    Huang X Y, Xu W F, Liang J M, Takagaki K, Gao X, Wu J Y 2010 Neuron 68 978

    [3]

    Huang X Y, William C T, Yang Q, Ma H T, Carlo R L, Steven J S, Wu J Y 2004 J. Neurosci. 24 9897

    [4]

    Viventi J, Kim D H, Vigeland L, Frechette E S, Blanco J A, Kim Y S, Avrin A E, Tiruvadi V R, Hwang S W, Vanleer A C, Wulsin D F, Davis K, Gelber C E, Palmer L, Spiegel J V, Wu J, Xiao J L, Huang Y G, Contreras D, Rogers J A, Litt B 2011 Nat. Neurosci. 14 1599

    [5]

    Davidenko J M, Pertsov A V, Salomonsz, Baxter W, Jalife J 1992 Nature 355 349

    [6]

    Yu Y F, Santos L M, Mattiace L A, Costa M L, Ferreira L C, Benabou K, Kim A H, Abrahams J, Bennett M V L, Rozental R 2012 PNAS 109 2585

    [7]

    Wang Q Y, Perc M, Duan Z S, Chen G R 2008 Phys. Lett. A 372 5681

    [8]

    Ma J, Huang L, Ying H P, Pu Z S 2012 Chin. Sci. Bull. 57 2094

    [9]

    Gu H G, Jia B, Li Y Y, Chen G R 2013 Physica A 392 1361

    [10]

    Hu B, Ma J, Tang J 2013 PloS One 8 e0069251

    [11]

    Qin H X, Ma J, Wang C N, Chu R T 2014 Sci. China:Phys. Mech. Astron. 57 1918

    [12]

    Ma J, Tang J 2015 Sci. China:Tech. Sci. 58 2038

    [13]

    Yao Y G, Deng H Y, Ma C Z, Yi M, Ma J 2017 PloS One 12 e0171273

    [14]

    Yao Y G, Deng H Y, Ma C Z, Yi M, Ma J 2017 Scientific Reports 7 43151

    [15]

    Jung P, Cornell-Bell A, Madden K S, Moss F 1998 J. Neurophysiol. 79 1098

    [16]

    Ma J, Wu Y, Ying H P, Jia Y 2011 Chin. Sci. Bull. 56 151

    [17]

    Wang C N, Ma J, Hu B L, Jin W Y 2015 Int. J. Mod. Phys. B 29 1550043

    [18]

    Wang P, Li Q Y, Tang G N 2018 Acta Phys. Sin. 67 030502 (in Chinese)[汪芃, 李倩昀, 唐国宁 2018 物理学报 67 030502]

    [19]

    Fohlmeister C, Gerstner W, Ritz R, Hemmen J L 1995 Neural Comput. 7 905

    [20]

    Xiao W W, Gu H G, Liu M R 2016 Sci. China:Tech. Sci. 59 1943

    [21]

    Tao Y, Gu H G 2017 Int. J. Mod. Phys. B 31 1750179

    [22]

    Okun M, Lampl I 2008 Nat. Neurosci. 11 535

    [23]

    Soriano J, Martínez M R, Tlusty T, Moses E 2008 PNAS 105 13758

    [24]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond. B 221 87

    [25]

    Adhikari B M, Prasad A, Dhamala M 2011 Chaos 21 023116

  • [1] 徐莹, 王春妮, 靳伍银, 马军. 梯度耦合下神经元网络中靶波和螺旋波的诱发研究. 物理学报, 2015, 64(19): 198701. doi: 10.7498/aps.64.198701
    [2] 马军, 苏文涛, 高加振. Hindmarsh-Rose混沌神经元自适应同步和参数识别的优化研究. 物理学报, 2010, 59(3): 1554-1561. doi: 10.7498/aps.59.1554
    [3] 汪芃, 李倩昀, 唐国宁. Hindmarsh-Rose神经元阵列自发产生螺旋波的研究. 物理学报, 2018, 67(3): 030502. doi: 10.7498/aps.67.20172140
    [4] 黄志精, 李倩昀, 白婧, 唐国宁. 在具有排斥耦合的神经元网络中有序斑图的熵测量. 物理学报, 2019, 68(11): 110503. doi: 10.7498/aps.68.20190231
    [5] 赵龙, 杨继平, 郑艳红. 神经元网络螺旋波诱发机理研究. 物理学报, 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [6] 陈 勇, 靳伍银, 马 军, 李延龙. 随机相位扰动抑制激发介质中漂移的螺旋波. 物理学报, 2007, 56(4): 2456-2465. doi: 10.7498/aps.56.2456
    [7] 邝玉兰, 唐国宁. 心脏中的螺旋波和时空混沌的抑制研究. 物理学报, 2012, 61(10): 100504. doi: 10.7498/aps.61.100504
    [8] 马军, 谢振博, 陈江星. 热敏神经元网络中螺旋波死亡和破裂的数值模拟. 物理学报, 2012, 61(3): 038701. doi: 10.7498/aps.61.038701
    [9] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究. 物理学报, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [10] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步. 物理学报, 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [11] 陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁. 间接延迟耦合可激发介质中螺旋波的演化. 物理学报, 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [12] 李倩昀, 黄志精, 唐国宁. 通过抑制波头旋转消除心脏中的螺旋波和时空混沌. 物理学报, 2018, 67(24): 248201. doi: 10.7498/aps.67.20181291
    [13] 李伟恒, 黎维新, 潘飞, 唐国宁. 两层耦合可激发介质中螺旋波转变为平面波. 物理学报, 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [14] 钟敏, 唐国宁. 局域反馈抑制心脏中的螺旋波和时空混沌. 物理学报, 2010, 59(3): 1593-1599. doi: 10.7498/aps.59.1593
    [15] 乔成功, 王利利, 李伟恒, 唐国宁. 钾扩散耦合引起的心脏中螺旋波的变化. 物理学报, 2013, 62(19): 198201. doi: 10.7498/aps.62.198201
    [16] 王春妮, 马军. 分布式电流刺激抑制心肌组织中螺旋波. 物理学报, 2013, 62(8): 084501. doi: 10.7498/aps.62.084501
    [17] 高继华, 谢伟苗, 高加振, 杨海朋, 戈早川. 耦合复金兹堡-朗道(Ginzburg-Landau)方程中的模螺旋波. 物理学报, 2012, 61(13): 130506. doi: 10.7498/aps.61.130506
    [18] 钟敏, 唐国宁. 用钙离子通道激动剂抑制心脏组织中的螺旋波和时空混沌. 物理学报, 2010, 59(5): 3070-3076. doi: 10.7498/aps.59.3070
    [19] 李伟恒, 潘飞, 黎维新, 唐国宁. 非对称耦合两层可激发介质中的螺旋波动力学. 物理学报, 2015, 64(19): 198201. doi: 10.7498/aps.64.198201
    [20] 田昌海, 邓敏艺, 孔令江, 刘慕仁. 螺旋波动力学性质的元胞自动机有向小世界网络研究. 物理学报, 2011, 60(8): 080505. doi: 10.7498/aps.60.080505
  • 引用本文:
    Citation:
计量
  • 文章访问数:  422
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-21
  • 修回日期:  2018-05-22
  • 刊出日期:  2018-09-05

在兴奋-抑制混沌神经元网络中有序波的自发形成

  • 1. 广西师范大学物理科学与技术学院, 桂林 541004
  • 通信作者: 唐国宁, tangguoning@sohu.com
    基金项目: 

    国家自然科学基金(批准号:11565005,11365003,11747307)资助的课题.

摘要: 大脑皮层在一定条件下可以自发出现螺旋波和平面波,为了了解这些有序波的产生机制,构造了一个双层的二维神经元网络.该网络由最近邻兴奋性耦合和长程抑制性耦合层组成,采用修改后的Hindmarsh-Rose神经元模型研究了该混沌神经元网络从具有随机相位分布的初态演化是否能自发出现各种有序波.数值模拟结果表明:当抑制性耦合强度比较小时,系统一般不会自发出现有序波;在兴奋性耦合强度足够大的情况下,抑制性耦合强度越大,系统越容易产生有序波.系统出现不同的有序波与系统初态和耦合强度有密切关系,适当选择兴奋性和抑制性耦合的耦合强度,系统会自发出现迷宫斑图、平面波、单螺旋波、多螺旋波、旋转方向相反的螺旋波对、双臂螺旋波、靶波、向内方形波等有序波斑图.螺旋波、迷宫斑图和内向方形波出现概率分别达到27.5%,21.5%和10.0%,这里的迷宫斑图是由不同传播方向的许多平面波组成,其他有序波出现概率比较小.研究结果有助于理解发生在大脑皮层中的自组织现象.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回