搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

8-9.5 keV正电子致Ti的K壳层电离截面的实验研究

钱宇瑞 吴英 杨夏童 陈秋香 尤俊栋 王宝义 况鹏 张鹏

8-9.5 keV正电子致Ti的K壳层电离截面的实验研究

钱宇瑞, 吴英, 杨夏童, 陈秋香, 尤俊栋, 王宝义, 况鹏, 张鹏
PDF
导出引用
导出核心图
  • 低能正电子碰撞原子内壳层电离截面的实验数据目前还很缺乏,从而影响了对近年来发展的各相关理论模型的检验,限制了慢正电子束流技术在诸多领域中的应用.本文采用慢正电子束流装置产生的8–9.5 keV正电子束碰撞纯厚Ti靶,利用硅漂移探测器(SDD)收集正电子碰撞Ti靶产生的X射线,同时采用高纯锗探测器在线获得与靶碰撞的入射正电子数,从而得到Ti的K壳层实验产额,并基于蒙特卡罗模拟程序PENELOPE获得模拟产额.将实验产额分别与内壳层电离截面数据库采用经典光学数据模型(ODM)和扭曲波玻恩近似理论模型(DWBA)的蒙特卡罗模拟产额进行对比,发现基于ODM理论模型的模拟产额与实验值有较大的偏差,基于DWBA理论模型的模拟产额与实验结果符合较好.根据实验产额和基于DWBA理论模型的模拟产额的比较结果,对蒙特卡罗模拟程序使用的DWBA理论模型数据库进行修正后再进行模拟和比较,从而得到可靠的8–9.5 keV正电子致Ti原子K壳层电离截面数据.
      通信作者: 吴英, w_y@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11275071)、华北电力大学大学生创新创业训练计划项目(批准号:2016-153)和中央高校基本科研业务费专项资金(批准号:2018ZD10)资助的课题.
    [1]

    An Z, Hou Q 2008 Phys. Rev. A 77 042702

    [2]

    Wang J J, Gong J, Gong Z L, Yan X L, Wang B 2009 The second National Symposium on Nuclear Technology and Applied Research Mianyang, China, May 1, 2009 p331 (in Chinese) [王君君, 龚静, 宫振丽, 闫晓丽, 王波 2009 第二届全国核技术及应用研究学术研讨会 中国绵阳, 2009年5月1日, 第331页]

    [3]

    Llovet X, Powell C J, Salvat F, Jablonski A 2014 J. Phys. Chem. Ref. Data 43 013102

    [4]

    Sepúlveda A, Bertol A P, Vasconcellos M A Z, Trincavelli J, Hinrichs R, Castellano G 2014 J. Phys. B:At. Mol. Opt. Phys. 47 215006

    [5]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2017 Radiat. Phys. Chem. 134 71

    [6]

    Qian Z C, Wu Y, Chang C H, Yuan Y, Mei C S, Zhu J J, Moharram K 2017 Europhys. Lett. 118 13001

    [7]

    Zhao J L, Tian L X, Li X L, An Z, Zhu J J, Liu M T 2015 Radiat. Phys. Chem. 107 47

    [8]

    Nagashima Y, Saito F, Itoh Y 2004 Phys. Rev. Lett. 92 223201

    [9]

    Nagashima Y, Shigeta W, Hyodo T 2007 Radiat. Phys. Chem. 76 465

    [10]

    Tian L X, Liu M T, Zhu J J, An Z, Wang B Y, Qin X B 2012 Plasma Sci. Technol. 14 434

    [11]

    Hippler R 1990 Phys. Lett. A 144 81

    [12]

    Luo S, Joy D C 1991 Microbeam Analysis (Vol. 1) (San Francisco:San Francisco Press) pp67-68

    [13]

    Khare S P, Wadehra J M 1996 Can. J. Phys. 74 376

    [14]

    Segui S, Dingfelder M, Salvat F 2003 Phys. Rev. A 67 062710

    [15]

    Colgan J, Fontes C J, Zhang H L 2006 Phys. Rev. A 73 062711.

    [16]

    Salvat F, Fernández-Vaea J M, Sempau J 2005 PENELOPE-2005, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Vol. 1) (Issy-les-Moulineau:OECD/NEA Data) ppix-xii

    [17]

    Zhu J J, An Z, Liu M T, Tian L X 2009 Phys. Rev. A 79 052710

    [18]

    Cullen D E, Hubbell J H, Kissel L 1997 Report UCRL-0400 6 5

    [19]

    Ribberfors R 1983 Phys. Rev. A 27 3061

    [20]

    Tian L X, Zhu J J, Liu M T, An Z 2009 Nucl. Instr. Meth. Phys. Res. B 267 3495

    [21]

    Bote D, Llovet X, Salvat F 2008 J. Phys. D:Appl. Phys. 41 105304

    [22]

    Sempau J, Fernández-Vaea J M, Acosta E, Salvat F 2003 Nucl. Instr. Meth. Phys. Res. B 207 107

    [23]

    Salvat F, Llovet X, Fernández-Vaea J M, Sempau J 2006 Microchim. Acta 155 67

    [24]

    Mayol R, Salvat F 1990 Phys. B 23 2117

    [25]

    He C Q, Wang J C, Zhu J, Wang S J 2013 Mater. Sci. Forum. 733 314

    [26]

    Kuang P, Han X L, Cao X Z, Xia R, Zhang P, Wang B Y 2017 Chin. Phys. B 26 057802

    [27]

    Kuang P 2017 Ph. D. Dissertation (Beijing:Institute of High Energy Physics, Chinese Academy of Sciences) (in Chinese) [况鹏 2017 博士学位论文(北京:中国科学院高能物理研究所)]

  • [1]

    An Z, Hou Q 2008 Phys. Rev. A 77 042702

    [2]

    Wang J J, Gong J, Gong Z L, Yan X L, Wang B 2009 The second National Symposium on Nuclear Technology and Applied Research Mianyang, China, May 1, 2009 p331 (in Chinese) [王君君, 龚静, 宫振丽, 闫晓丽, 王波 2009 第二届全国核技术及应用研究学术研讨会 中国绵阳, 2009年5月1日, 第331页]

    [3]

    Llovet X, Powell C J, Salvat F, Jablonski A 2014 J. Phys. Chem. Ref. Data 43 013102

    [4]

    Sepúlveda A, Bertol A P, Vasconcellos M A Z, Trincavelli J, Hinrichs R, Castellano G 2014 J. Phys. B:At. Mol. Opt. Phys. 47 215006

    [5]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2017 Radiat. Phys. Chem. 134 71

    [6]

    Qian Z C, Wu Y, Chang C H, Yuan Y, Mei C S, Zhu J J, Moharram K 2017 Europhys. Lett. 118 13001

    [7]

    Zhao J L, Tian L X, Li X L, An Z, Zhu J J, Liu M T 2015 Radiat. Phys. Chem. 107 47

    [8]

    Nagashima Y, Saito F, Itoh Y 2004 Phys. Rev. Lett. 92 223201

    [9]

    Nagashima Y, Shigeta W, Hyodo T 2007 Radiat. Phys. Chem. 76 465

    [10]

    Tian L X, Liu M T, Zhu J J, An Z, Wang B Y, Qin X B 2012 Plasma Sci. Technol. 14 434

    [11]

    Hippler R 1990 Phys. Lett. A 144 81

    [12]

    Luo S, Joy D C 1991 Microbeam Analysis (Vol. 1) (San Francisco:San Francisco Press) pp67-68

    [13]

    Khare S P, Wadehra J M 1996 Can. J. Phys. 74 376

    [14]

    Segui S, Dingfelder M, Salvat F 2003 Phys. Rev. A 67 062710

    [15]

    Colgan J, Fontes C J, Zhang H L 2006 Phys. Rev. A 73 062711.

    [16]

    Salvat F, Fernández-Vaea J M, Sempau J 2005 PENELOPE-2005, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Vol. 1) (Issy-les-Moulineau:OECD/NEA Data) ppix-xii

    [17]

    Zhu J J, An Z, Liu M T, Tian L X 2009 Phys. Rev. A 79 052710

    [18]

    Cullen D E, Hubbell J H, Kissel L 1997 Report UCRL-0400 6 5

    [19]

    Ribberfors R 1983 Phys. Rev. A 27 3061

    [20]

    Tian L X, Zhu J J, Liu M T, An Z 2009 Nucl. Instr. Meth. Phys. Res. B 267 3495

    [21]

    Bote D, Llovet X, Salvat F 2008 J. Phys. D:Appl. Phys. 41 105304

    [22]

    Sempau J, Fernández-Vaea J M, Acosta E, Salvat F 2003 Nucl. Instr. Meth. Phys. Res. B 207 107

    [23]

    Salvat F, Llovet X, Fernández-Vaea J M, Sempau J 2006 Microchim. Acta 155 67

    [24]

    Mayol R, Salvat F 1990 Phys. B 23 2117

    [25]

    He C Q, Wang J C, Zhu J, Wang S J 2013 Mater. Sci. Forum. 733 314

    [26]

    Kuang P, Han X L, Cao X Z, Xia R, Zhang P, Wang B Y 2017 Chin. Phys. B 26 057802

    [27]

    Kuang P 2017 Ph. D. Dissertation (Beijing:Institute of High Energy Physics, Chinese Academy of Sciences) (in Chinese) [况鹏 2017 博士学位论文(北京:中国科学院高能物理研究所)]

  • [1] 山田亮子, 渡边光男, 高飞, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析. 物理学报, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [2] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用. 物理学报, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [3] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [4] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [5] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用. 物理学报, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [6] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟. 物理学报, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [7] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性. 物理学报, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
    [8] 王世奇, 连贵君, 熊光成. La0.7Ca0.3MnO3和CeO2混合块状样品电输运性质及使用分形迭代电阻网络模型的计算模拟. 物理学报, 2005, 54(8): 3815-3821. doi: 10.7498/aps.54.3815
    [9] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟. 激光加速电子束放射照相的模拟研究. 物理学报, 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [10] 赵兴宇, 王丽娜, 樊小辉, 张丽丽, 卫来, 张晋鲁, 黄以能. 玻璃化转变的分子串模型中分子串弛豫模式的计算机模拟. 物理学报, 2011, 60(3): 036403. doi: 10.7498/aps.60.036403
    [11] 李颖涵, 安竹, 李玲. keV能量电子致Al、Ti、Zr、W、Au元素厚靶特征X射线产额与截面的研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200264
    [12] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究 . 物理学报, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [13] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟. 物理学报, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [14] 羊奕伟, 严小松, 刘荣, 鹿心鑫, 蒋励, 王玫, 林菊芳. 贫铀球壳中D-T中子诱发的铀反应率的测量与分析. 物理学报, 2013, 62(2): 022801. doi: 10.7498/aps.62.022801
    [15] 熊开国, 封国林, 胡经国, 杨杰, 万仕全. 气候变化中高温破纪录事件的蒙特卡罗模拟研究. 物理学报, 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [16] 杨波, 范敏, 刘文奇, 陈晓松. 自我质疑机制下公共物品博弈模型的相变特性. 物理学报, 2017, 66(19): 196401. doi: 10.7498/aps.66.196401
    [17] 陈媛, 王晓方, 邵光超. 电子束放射照相的特性与参数优化. 物理学报, 2015, 64(15): 154101. doi: 10.7498/aps.64.154101
    [18] 夏志林. 激光作用下纳米限域介质材料中的电子加速过程. 物理学报, 2011, 60(5): 056804. doi: 10.7498/aps.60.056804
    [19] 张雪, 王勇, 范俊杰, 朱方, 张瑞. 金属壁与介质窗之间次级电子倍增效应的研究. 物理学报, 2014, 63(16): 167901. doi: 10.7498/aps.63.167901
    [20] 张雪, 范俊杰, 王勇. 刻周期半圆弧槽窗片对次级电子倍增效应的抑制. 物理学报, 2014, 63(22): 227902. doi: 10.7498/aps.63.227902
  • 引用本文:
    Citation:
计量
  • 文章访问数:  625
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-07-22
  • 刊出日期:  2018-10-05

8-9.5 keV正电子致Ti的K壳层电离截面的实验研究

  • 1. 华北电力大学, 非能动核能安全技术北京市重点实验室, 北京 102206;
  • 2. 中国科学院高能物理研究所, 北京 100049
  • 通信作者: 吴英, w_y@ncepu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11275071)、华北电力大学大学生创新创业训练计划项目(批准号:2016-153)和中央高校基本科研业务费专项资金(批准号:2018ZD10)资助的课题.

摘要: 低能正电子碰撞原子内壳层电离截面的实验数据目前还很缺乏,从而影响了对近年来发展的各相关理论模型的检验,限制了慢正电子束流技术在诸多领域中的应用.本文采用慢正电子束流装置产生的8–9.5 keV正电子束碰撞纯厚Ti靶,利用硅漂移探测器(SDD)收集正电子碰撞Ti靶产生的X射线,同时采用高纯锗探测器在线获得与靶碰撞的入射正电子数,从而得到Ti的K壳层实验产额,并基于蒙特卡罗模拟程序PENELOPE获得模拟产额.将实验产额分别与内壳层电离截面数据库采用经典光学数据模型(ODM)和扭曲波玻恩近似理论模型(DWBA)的蒙特卡罗模拟产额进行对比,发现基于ODM理论模型的模拟产额与实验值有较大的偏差,基于DWBA理论模型的模拟产额与实验结果符合较好.根据实验产额和基于DWBA理论模型的模拟产额的比较结果,对蒙特卡罗模拟程序使用的DWBA理论模型数据库进行修正后再进行模拟和比较,从而得到可靠的8–9.5 keV正电子致Ti原子K壳层电离截面数据.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回