搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射

张顺浓 朱伟骅 李炬赓 金钻明 戴晔 张宗芝 马国宏 姚建铨

铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射

张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨
PDF
导出引用
导出核心图
  • 利用飞秒激光脉冲在生长于二氧化硅衬底上的W/CoFeB/Pt和Ta/CoFeB/Pt两类铁磁/非磁性金属异质结构中实现高效、宽带的相干THz脉冲辐射.实验中,THz脉冲的相位随外加磁场的反转而反转,表明THz辐射与样品的磁有序密切相关.为了考察三层膜结构THz辐射的物理机制,分别研究了构成三层膜结构的双层异质结构(包括CoFeB/W,CoFeB/Pt和CoFeB/Ta)的THz辐射.实验结果都与逆自旋霍尔效应相符合,W/CoFeB/Pt和Ta/CoFeB/Pt三层膜结构所辐射的THz强度优于同等激发功率下的ZnTe(厚度0.5 mm)晶体.此外,还研究了两款异质结构和ZnTe的THz辐射强度与激发光脉冲能量密度的关系,发现Ta/CoFeB/Pt的饱和能量密度略大于W/CoFeB/Pt的饱和能量密度,表明自旋电子在Ta/CoFeB/Pt中的界面积累效应相对较小.
    [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [3]

    Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Klui M, Turchinovich D 2015 Nat. Phys. 11 761

    [4]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [5]

    Fischer B M, Walther M, Jepsen P U 2002 Phys. Med. Biol. 47 3807

    [6]

    Siegel P H 2004 IEEE Trans. Microw. Theory Tech. 52 2438

    [7]

    Zhang R, Li H, Cao J C, Feng S L 2009 Acta Phys. Sin. 58 4618 (in Chinese) [张戎, 黎华, 曹俊诚, 封松林 2009 物理学报 58 4618]

    [8]

    Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422

    [9]

    Lewis R A 2014 J. Phys. D:Appl. Phys. 47 374001

    [10]

    Wang W M, Zhang L L, Li Y T, Sheng Z M, Zhang J 2018 Acta Phys. Sin. 67 124202 (in Chinese) [王伟民, 张亮亮, 李玉同, 盛政明, 张杰 2018 物理学报 67 124202]

    [11]

    Nahata A, Weling A S, Heinz T F 1996 Appl. Phys. Lett. 69 2321

    [12]

    Zhong K, Yao J Q, Xu D G, Zhang H Y, Wang P 2011 Acta Phys. Sin. 60 034210 (in Chinese) [钟凯, 姚建铨, 徐德刚, 张会云, 王鹏 2011 物理学报 60 034210]

    [13]

    Matsuura S, Tani M, Sakai K 1997 Appl. Phys. Lett. 70 559

    [14]

    Shi W, Yan Z J 2015 Acta Phys. Sin. 64 228702 (in Chinese) [施卫, 闫志巾 2015 物理学报 64 228702]

    [15]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465

    [16]

    Hilton D J, Averitt R D, Meserole C A, Fisher G L, Funk D J, Thompson J D, Taylor A J 2004 Opt. Lett. 29 1805

    [17]

    Shen J, Fan X, Chen Z, de Camp M F, Zhang H, Xiao J Q 2012 Appl. Phys. Lett. 101 072401

    [18]

    Nishant K, Hendrikx R W, Adam A J, Planken P C 2015 Opt. Express 23 14252

    [19]

    Gorelov S D, Mashkovich E A, Tsarev M V, Bakunov M I 2013 Phys. Rev. B 88 220411

    [20]

    Mikhaylovskiy R V, Hendry E, Kruglyak V V, Pisarev R V, Rasing T, Kimel A V 2014 Phys. Rev. B 90 184405

    [21]

    Mikhaylovskiy R V, Hendry E, Secchi A, Mentink J H, Eckstein M, Wu A, Pisarev R V, Kruglyak V V, Katsnelson M I, Rasing T, Kimel A V 2015 Nature Commun. 6 8190

    [22]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nature Nanotech. 8 256

    [23]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031

    [24]

    Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Opt. Mater. 4 1944

    [25]

    Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247

    [26]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Mnzenberg M, Klui M, Kampfrath T 2016 Nature Photon. 10 483

    [27]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Klui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402

    [28]

    Seifert T, Martens U, Gnther S, Schoen M A W, Radu F, Chen X Z, Lucas I, Ramos R, Aguirre M H, Algarabel P A, Anadn A, Krner H S, Walowski J, Back C, Ibarra M R, Morelln L, Saitoh E, Wolf M, Song C, Uchida K, Mnzenberg M, Radu I, Kampfrath T 2017 Spin 7 1740010

    [29]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311

    [30]

    Sasaki Y, Suzuki K Z, Mizukami S 2017 Appl. Phys. Lett. 111 102401

    [31]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203

    [32]

    Eschenlohr A, Battiato M, Maldonad P, Pontius N, Kachel T, Holldack K, Mitzner R, Fhlisch A, Oppeneer P M, Stamm C 2013 Nat. Mater. 12 332

    [33]

    Melnikov A, Razdolski I, Wehling T O, Papaioannou E T, Roddatis V, Fumagalli P, Aktsipetrov O, Lichtenstein A I, Bovensiepen U 2011 Phys. Rev. Lett. 107 076601

    [34]

    Rudolf D, Chan L O, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M, Oppeneer P M 2012 Nature Commun. 3 1037

    [35]

    Cramer J, Seifert T, Kronenberg A, Fuhrmann F, Jakob G, Jourdan M, Kampfrath T, Klaui M 2018 Nano Lett. 18 1064

    [36]

    Zhang S, Jin Z, Zhu Z, Zhu W, Zhang Z, Ma G, Yao J 2018 J. Phys. D:Appl. Phys. 51 034001

    [37]

    Hao Q, Xiao G 2015 Phys. Rev. Appl. 3 034009

    [38]

    Tanaka T, Kontani H, Naito M, Naito T, Hirashima D S, Yamada K, Inoue J 2008 Phys. Rev. B 77 165117

    [39]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blugel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455

    [40]

    Huisman T J, Rasing T 2017 J. Phys. Soc. Jpn. 86 011009

    [41]

    Wang X M, Zhao Y, Wang X M, Jiang T, Shen C L, Li W H, Peng L P, Yan D W, Zhan Z Q, Deng Q H, Wu W D, Tang Y J 2015 Mater. Lett. 153 81

    [42]

    Li Y, Wang X, Xiong Z, Cao L, Chen J, Wang X, Shen C, Peng L, Zhao Y, Li W, Deng Q, Wang J, Yu J, Yin H, Wu W 2016 J. Alloy. Compd. 686 841

    [43]

    Kinoshita Y, Kida N, Sotome M, Miyamoto T, Iguchi Y, Onose Y, Okamoto H 2016 ACS Photon. 3 1170

    [44]

    Zhang S, Jin Z, Liu X, Zhao W, Lin X, Jing C, Ma G 2017 Opt. Lett. 42 3080

    [45]

    Barnes M E, Berry S A, Gow P, McBryde D, Daniell G J, Beere H E, Ritchie D A, Apostolopoulos V 2013 Opt. Express 21 16263

  • [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [3]

    Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Klui M, Turchinovich D 2015 Nat. Phys. 11 761

    [4]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [5]

    Fischer B M, Walther M, Jepsen P U 2002 Phys. Med. Biol. 47 3807

    [6]

    Siegel P H 2004 IEEE Trans. Microw. Theory Tech. 52 2438

    [7]

    Zhang R, Li H, Cao J C, Feng S L 2009 Acta Phys. Sin. 58 4618 (in Chinese) [张戎, 黎华, 曹俊诚, 封松林 2009 物理学报 58 4618]

    [8]

    Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422

    [9]

    Lewis R A 2014 J. Phys. D:Appl. Phys. 47 374001

    [10]

    Wang W M, Zhang L L, Li Y T, Sheng Z M, Zhang J 2018 Acta Phys. Sin. 67 124202 (in Chinese) [王伟民, 张亮亮, 李玉同, 盛政明, 张杰 2018 物理学报 67 124202]

    [11]

    Nahata A, Weling A S, Heinz T F 1996 Appl. Phys. Lett. 69 2321

    [12]

    Zhong K, Yao J Q, Xu D G, Zhang H Y, Wang P 2011 Acta Phys. Sin. 60 034210 (in Chinese) [钟凯, 姚建铨, 徐德刚, 张会云, 王鹏 2011 物理学报 60 034210]

    [13]

    Matsuura S, Tani M, Sakai K 1997 Appl. Phys. Lett. 70 559

    [14]

    Shi W, Yan Z J 2015 Acta Phys. Sin. 64 228702 (in Chinese) [施卫, 闫志巾 2015 物理学报 64 228702]

    [15]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465

    [16]

    Hilton D J, Averitt R D, Meserole C A, Fisher G L, Funk D J, Thompson J D, Taylor A J 2004 Opt. Lett. 29 1805

    [17]

    Shen J, Fan X, Chen Z, de Camp M F, Zhang H, Xiao J Q 2012 Appl. Phys. Lett. 101 072401

    [18]

    Nishant K, Hendrikx R W, Adam A J, Planken P C 2015 Opt. Express 23 14252

    [19]

    Gorelov S D, Mashkovich E A, Tsarev M V, Bakunov M I 2013 Phys. Rev. B 88 220411

    [20]

    Mikhaylovskiy R V, Hendry E, Kruglyak V V, Pisarev R V, Rasing T, Kimel A V 2014 Phys. Rev. B 90 184405

    [21]

    Mikhaylovskiy R V, Hendry E, Secchi A, Mentink J H, Eckstein M, Wu A, Pisarev R V, Kruglyak V V, Katsnelson M I, Rasing T, Kimel A V 2015 Nature Commun. 6 8190

    [22]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nature Nanotech. 8 256

    [23]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031

    [24]

    Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Opt. Mater. 4 1944

    [25]

    Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247

    [26]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Mnzenberg M, Klui M, Kampfrath T 2016 Nature Photon. 10 483

    [27]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Klui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402

    [28]

    Seifert T, Martens U, Gnther S, Schoen M A W, Radu F, Chen X Z, Lucas I, Ramos R, Aguirre M H, Algarabel P A, Anadn A, Krner H S, Walowski J, Back C, Ibarra M R, Morelln L, Saitoh E, Wolf M, Song C, Uchida K, Mnzenberg M, Radu I, Kampfrath T 2017 Spin 7 1740010

    [29]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311

    [30]

    Sasaki Y, Suzuki K Z, Mizukami S 2017 Appl. Phys. Lett. 111 102401

    [31]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203

    [32]

    Eschenlohr A, Battiato M, Maldonad P, Pontius N, Kachel T, Holldack K, Mitzner R, Fhlisch A, Oppeneer P M, Stamm C 2013 Nat. Mater. 12 332

    [33]

    Melnikov A, Razdolski I, Wehling T O, Papaioannou E T, Roddatis V, Fumagalli P, Aktsipetrov O, Lichtenstein A I, Bovensiepen U 2011 Phys. Rev. Lett. 107 076601

    [34]

    Rudolf D, Chan L O, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M, Oppeneer P M 2012 Nature Commun. 3 1037

    [35]

    Cramer J, Seifert T, Kronenberg A, Fuhrmann F, Jakob G, Jourdan M, Kampfrath T, Klaui M 2018 Nano Lett. 18 1064

    [36]

    Zhang S, Jin Z, Zhu Z, Zhu W, Zhang Z, Ma G, Yao J 2018 J. Phys. D:Appl. Phys. 51 034001

    [37]

    Hao Q, Xiao G 2015 Phys. Rev. Appl. 3 034009

    [38]

    Tanaka T, Kontani H, Naito M, Naito T, Hirashima D S, Yamada K, Inoue J 2008 Phys. Rev. B 77 165117

    [39]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blugel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455

    [40]

    Huisman T J, Rasing T 2017 J. Phys. Soc. Jpn. 86 011009

    [41]

    Wang X M, Zhao Y, Wang X M, Jiang T, Shen C L, Li W H, Peng L P, Yan D W, Zhan Z Q, Deng Q H, Wu W D, Tang Y J 2015 Mater. Lett. 153 81

    [42]

    Li Y, Wang X, Xiong Z, Cao L, Chen J, Wang X, Shen C, Peng L, Zhao Y, Li W, Deng Q, Wang J, Yu J, Yin H, Wu W 2016 J. Alloy. Compd. 686 841

    [43]

    Kinoshita Y, Kida N, Sotome M, Miyamoto T, Iguchi Y, Onose Y, Okamoto H 2016 ACS Photon. 3 1170

    [44]

    Zhang S, Jin Z, Liu X, Zhao W, Lin X, Jing C, Ma G 2017 Opt. Lett. 42 3080

    [45]

    Barnes M E, Berry S A, Gow P, McBryde D, Daniell G J, Beere H E, Ritchie D A, Apostolopoulos V 2013 Opt. Express 21 16263

  • [1] 韩方彬, 张文旭, 彭斌, 张万里. NiFe/Pt薄膜中角度相关的逆自旋霍尔效应. 物理学报, 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
    [2] 何冬梅, 彭斌, 张万里, 张文旭. 掺铌SrTiO3中的逆自旋霍尔效应. 物理学报, 2019, 68(10): 106101. doi: 10.7498/aps.68.20190118
    [3] 杨翀, 姚建明. AB效应对自旋多端输运的影响. 物理学报, 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [4] 林贤, 金钻明, 李炬赓, 郭飞云, 庄乃锋, 陈建中, 戴晔, 阎晓娜, 马国宏. 非线性克尔效应对飞秒激光偏振的超快调制. 物理学报, 2018, 67(23): 237801. doi: 10.7498/aps.67.20181450
    [5] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取. 物理学报, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [6] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学. 物理学报, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [7] 吴群, 王玥, 贺训军, 殷景华, 施卫. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [8] 傅佳辉, 王玥, 吴群, 王岩, 王东兴, 吴昱明, 李乐伟. 碳纳米管辐射太赫兹波的理论分析与数值验证. 物理学报, 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [9] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性. 物理学报, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [10] 张戎, 曹俊诚. 光子晶体对太赫兹波的调制特性研究. 物理学报, 2010, 59(6): 3924-3929. doi: 10.7498/aps.59.3924
    [11] 孙红起, 赵国忠, 张存林, 杨国桢. 不同中心波长飞秒脉冲激发InAs表面辐射太赫兹波的机理研究. 物理学报, 2008, 57(2): 790-795. doi: 10.7498/aps.57.790
    [12] 李忠洋, 姚建铨, 李俊, 邴丕彬, 徐德刚, 王鹏. 基于闪锌矿晶体中受激电磁耦子散射产生可调谐太赫兹波的理论研究. 物理学报, 2010, 59(9): 6237-6242. doi: 10.7498/aps.59.6237
    [13] 陆金星, 黄志明, 黄敬国, 王兵兵, 沈学民. 相位失配与材料吸收对利用GaSe差频产生太赫兹波功率影响的研究. 物理学报, 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
    [14] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展. 物理学报, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [15] 郑灵, 赵青, 刘述章, 邢晓俊. 太赫兹波在非磁化等离子体中的传输特性研究. 物理学报, 2012, 61(24): 245202. doi: 10.7498/aps.61.245202
    [16] 王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉. 太赫兹波段表面等离子光子学研究进展. 物理学报, 2012, 61(13): 137301. doi: 10.7498/aps.61.137301
    [17] 孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武. 二氧化钒薄膜低温制备及其太赫兹调制特性研究. 物理学报, 2013, 62(1): 017202. doi: 10.7498/aps.62.017202
    [18] 张会云, 刘蒙, 尹贻恒, 吴志心, 申端龙, 张玉萍. 基于格林函数法研究金属线栅在太赫兹波段的散射特性. 物理学报, 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [19] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [20] 田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武. 硅基全光宽带太赫兹幅度调制器的研究. 物理学报, 2015, 64(2): 028401. doi: 10.7498/aps.64.028401
  • 引用本文:
    Citation:
计量
  • 文章访问数:  421
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-15
  • 修回日期:  2018-07-26
  • 刊出日期:  2018-10-05

铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射

    基金项目: 

    国家自然科学基金(批准号:11604202,11674213,61735010,51671057,11774220)、上海高校青年东方学者(批准号:QD2015020)、上海市教育委员会和上海市教育发展基金会晨光计划(批准号:16CG45)和上海市青年科技启明星计划(批准号:18QA1401700)资助的课题.

摘要: 利用飞秒激光脉冲在生长于二氧化硅衬底上的W/CoFeB/Pt和Ta/CoFeB/Pt两类铁磁/非磁性金属异质结构中实现高效、宽带的相干THz脉冲辐射.实验中,THz脉冲的相位随外加磁场的反转而反转,表明THz辐射与样品的磁有序密切相关.为了考察三层膜结构THz辐射的物理机制,分别研究了构成三层膜结构的双层异质结构(包括CoFeB/W,CoFeB/Pt和CoFeB/Ta)的THz辐射.实验结果都与逆自旋霍尔效应相符合,W/CoFeB/Pt和Ta/CoFeB/Pt三层膜结构所辐射的THz强度优于同等激发功率下的ZnTe(厚度0.5 mm)晶体.此外,还研究了两款异质结构和ZnTe的THz辐射强度与激发光脉冲能量密度的关系,发现Ta/CoFeB/Pt的饱和能量密度略大于W/CoFeB/Pt的饱和能量密度,表明自旋电子在Ta/CoFeB/Pt中的界面积累效应相对较小.

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回