搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

插层FeSe高温超导体的高压研究进展

孙建平 Prashant Shahi 周花雪 倪顺利 王少华 雷和畅 王铂森 董晓莉 赵忠贤 程金光

插层FeSe高温超导体的高压研究进展

孙建平, Prashant Shahi, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光
PDF
导出引用
  • 通过对FeSe进行化学插层可以将其超导转变温度(Tc)从约8 K提高到40 K以上,实现高温超导电性.最近,我们对两种插层FeSe高温超导材料(Li0.84Fe0.16)OHFe0.98Se和Li0.36(NH3)yFe2Se2开展了高压调控研究,发现压力会首先抑制高温超导相(称为SC-I相),然后在临界压力Pc以上诱导出第二个高温超导相(称为SC-Ⅱ相),呈现出双拱形T-P超导相图.这两个体系的Pc分别约为5和2 GPa,两个体系SC-Ⅱ相的最高Tc分别可以达到约52和55 K,比相应SC-I相的初始Tc提高了10 K.对(Li0.84Fe0.16)OHFe0.98Se的正常态电输运性质分析表明,SC-I和SC-Ⅱ相的正常态分别具有费米液体和非费米液体行为,意味着这两个超导相可能存在显著差异.此外,还发现这两个体系的SC-Ⅱ相的Tc与霍尔系数倒数1/RH(载流子浓度ne)具有很好的线性依赖关系.对(Li0.84Fe0.16)OHFe0.98Se的高压X射线衍射测量排除了其在10 GPa以内发生结构相变的可能,因此Pc以上SC-Ⅱ相的出现和载流子浓度的增加很可能起源于压力导致的费米面重构.
      通信作者: 程金光, jgcheng@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11574377)、国家重点研发计划(批准号:2018YFA0305700,2018YFA0305800)和中国科学院前沿科学重点项目(批准号:QYZDB-SSW-SLH013,QYZDB-SSW-SLH001)资助的课题.
    [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [2]

    Chen X, Dai P, Feng D, Xiang T, Zhang F C 2014 Natl. Sci. Rev. 1 371

    [3]

    Si Q, Yu R, Abraham E 2016 Nat. Rev. Mater. 1 16017

    [4]

    Ren Z, Lu W, Yang J, Yi W, Shen X, Li Z, Che G, Dong X, Sun L, Zhou F, Zhao Z 2008 Chin. Phys. Lett. 25 2215

    [5]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [6]

    Bohmer A E, Kreisel A 2018 J. Phys.: Condens. Matter 30 023001

    [7]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002

    [8]

    Shimojima T, Suzuki Y, Snonbe T, Nakamura A, Sakano M, Omachi J, Yoshioka K, Kuwata-Gonokami M, Ono K, Kumigashira H, Bohmer A E, Hardy F, Wolf T, Meingast C, Lohneysen H v, Ikeda H, Ishizaka K 2014 Phys. Rev. B 90 121111

    [9]

    Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, Takahashi T 2014 Phys. Rev. Lett. 113 237001

    [10]

    Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97

    [11]

    Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valenti R 2015 Nat. Phys. 11 953

    [12]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 PNAS 105 14262

    [13]

    Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, Lohneysen H v, Shibauchi T, Matsuda Y 2014 PNAS 111 16309

    [14]

    Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520

    [15]

    Scheidt E W, Hathwar V R, Schmitz D, Dunbar A, Scherer W, Mayr F, Tsurkan V, Deisenhofer J, Loidl A 2012 Eur. Phys. J. B 85 279

    [16]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Lou X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2014 Nat. Mater. 14 325

    [17]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [18]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [19]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ouyang B, Wang Q, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Mater. 12 605

    [20]

    Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nat. Mater. 14 285

    [21]

    Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, Zhou X J 2016 Nat. Commun. 7 10608

    [22]

    Lei B, Xiang Z J, Lu X F, Wang N Z, Chang J R, Shang C, Zhang A M, Zhang Q M, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. B 93 060501

    [23]

    Ren M Q, Yan Y J, Niu X H, Tao R, Hu D, Peng R, Xie B P, Zhao J, Zhang T, Feng D L 2017 Sci. Adv. 3 e1603238

    [24]

    Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H K, Zhao Z X 2012 Nature 483 67

    [25]

    Wang C H, Chen T K, Chang C C, Hsu C H, Lee Y C, Wang M J, Wu P M, Wu M K 2015 EPL 111 27004

    [26]

    Ye F, Bao W, Chi S, dos Santos A M, Molaison J J, Fang M H, Wang H D, Mao Q H, Wang J C, Liu J J, Sheng J M 2014 Chin. Phys. Lett. 31 127401

    [27]

    Fujita H, Kagayama T, Shimizu K, Yamamoto Y, Mizuki J I, Okazaki H, Takano Y 2015 J. Phys.: Conf. Ser. 592 012070

    [28]

    Izumi M, Zheng L, Sakai Y, Goto H, Sakata M, Nakamoto Y, Nguyen H L, Kagayama T, Shimizu K, Araki S, Kobayashi T C, Kambe T, Gu D, Guo J, Liu J, Li Y, Sun L, Prassides K, Kubozono Y 2015 Sci. Rep. 5 9477

    [29]

    Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F, Zhao Z X 2015 Phys. Rev. B 92 064515

    [30]

    Sun S S, Wang S H, Yu R, Lei H C 2017 Phys. Rev. B 96 064512

    [31]

    Cheng J G 2017 Acta Phys. Sin. 66 037401 (in Chinese)[程金光 2017 物理学报 66 037401]

    [32]

    Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X, Cheng J G 2018 Nat. Commun. 9 380

    [33]

    Shahi P, Sun J P, Wang S H, Jiao Y Y, Chen K Y, Sun S S, Lei H C, Uwatoko Y, Wang B S, Cheng J G 2017 Phys. Rev. B 97 020508

    [34]

    Cheng J G, Wang B S, Sun J P, Uwatoko Y 2018 Chin. Phys. B 27 077403

    [35]

    Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G, Zhao Z 2015 J. Am. Chem. Soc. 137 66

    [36]

    Jin K, Butch N P, Kirshenbaum K, Paglione J, Greene R L 2011 Nature 476 73

    [37]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Kirata K, Terashima T, Matsuda Y 2010 Phys. Rev. B 81 184519

    [38]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Comm. 7 12146

    [39]

    Phan G N, Nakayama K, Sugawara K, Sato T, Urato T, Tanabe Y, Tanigaki K, Nabeshima F, Imai Y, Maeda A, Takahashi T 2017 Phys. Rev. B 95 224507

    [40]

    Iimura S, Matsuishi S, Sato H, Hanna T, Muraba Y, Kim S W, Kim J E, Takata M, Hosono H 2012 Nat. Commun. 3 943

    [41]

    Yang J, Zhou R, Wei L L, Yang H X, Li J Q, Zhao Z X, Zheng G Q 2015 Chin. Phys. Lett. 32 107401

    [42]

    Das T, Panagopoulos C 2016 New J. Phys. 18 103033

    [43]

    Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G, Steglich F 2003 Science 302 2104

    [44]

    Das T, Balatsky A V 2013 New J. Phys. 15 093045

  • [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [2]

    Chen X, Dai P, Feng D, Xiang T, Zhang F C 2014 Natl. Sci. Rev. 1 371

    [3]

    Si Q, Yu R, Abraham E 2016 Nat. Rev. Mater. 1 16017

    [4]

    Ren Z, Lu W, Yang J, Yi W, Shen X, Li Z, Che G, Dong X, Sun L, Zhou F, Zhao Z 2008 Chin. Phys. Lett. 25 2215

    [5]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [6]

    Bohmer A E, Kreisel A 2018 J. Phys.: Condens. Matter 30 023001

    [7]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002

    [8]

    Shimojima T, Suzuki Y, Snonbe T, Nakamura A, Sakano M, Omachi J, Yoshioka K, Kuwata-Gonokami M, Ono K, Kumigashira H, Bohmer A E, Hardy F, Wolf T, Meingast C, Lohneysen H v, Ikeda H, Ishizaka K 2014 Phys. Rev. B 90 121111

    [9]

    Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, Takahashi T 2014 Phys. Rev. Lett. 113 237001

    [10]

    Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97

    [11]

    Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valenti R 2015 Nat. Phys. 11 953

    [12]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 PNAS 105 14262

    [13]

    Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, Lohneysen H v, Shibauchi T, Matsuda Y 2014 PNAS 111 16309

    [14]

    Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520

    [15]

    Scheidt E W, Hathwar V R, Schmitz D, Dunbar A, Scherer W, Mayr F, Tsurkan V, Deisenhofer J, Loidl A 2012 Eur. Phys. J. B 85 279

    [16]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Lou X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2014 Nat. Mater. 14 325

    [17]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [18]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [19]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ouyang B, Wang Q, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Mater. 12 605

    [20]

    Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nat. Mater. 14 285

    [21]

    Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, Zhou X J 2016 Nat. Commun. 7 10608

    [22]

    Lei B, Xiang Z J, Lu X F, Wang N Z, Chang J R, Shang C, Zhang A M, Zhang Q M, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. B 93 060501

    [23]

    Ren M Q, Yan Y J, Niu X H, Tao R, Hu D, Peng R, Xie B P, Zhao J, Zhang T, Feng D L 2017 Sci. Adv. 3 e1603238

    [24]

    Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H K, Zhao Z X 2012 Nature 483 67

    [25]

    Wang C H, Chen T K, Chang C C, Hsu C H, Lee Y C, Wang M J, Wu P M, Wu M K 2015 EPL 111 27004

    [26]

    Ye F, Bao W, Chi S, dos Santos A M, Molaison J J, Fang M H, Wang H D, Mao Q H, Wang J C, Liu J J, Sheng J M 2014 Chin. Phys. Lett. 31 127401

    [27]

    Fujita H, Kagayama T, Shimizu K, Yamamoto Y, Mizuki J I, Okazaki H, Takano Y 2015 J. Phys.: Conf. Ser. 592 012070

    [28]

    Izumi M, Zheng L, Sakai Y, Goto H, Sakata M, Nakamoto Y, Nguyen H L, Kagayama T, Shimizu K, Araki S, Kobayashi T C, Kambe T, Gu D, Guo J, Liu J, Li Y, Sun L, Prassides K, Kubozono Y 2015 Sci. Rep. 5 9477

    [29]

    Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F, Zhao Z X 2015 Phys. Rev. B 92 064515

    [30]

    Sun S S, Wang S H, Yu R, Lei H C 2017 Phys. Rev. B 96 064512

    [31]

    Cheng J G 2017 Acta Phys. Sin. 66 037401 (in Chinese)[程金光 2017 物理学报 66 037401]

    [32]

    Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X, Cheng J G 2018 Nat. Commun. 9 380

    [33]

    Shahi P, Sun J P, Wang S H, Jiao Y Y, Chen K Y, Sun S S, Lei H C, Uwatoko Y, Wang B S, Cheng J G 2017 Phys. Rev. B 97 020508

    [34]

    Cheng J G, Wang B S, Sun J P, Uwatoko Y 2018 Chin. Phys. B 27 077403

    [35]

    Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G, Zhao Z 2015 J. Am. Chem. Soc. 137 66

    [36]

    Jin K, Butch N P, Kirshenbaum K, Paglione J, Greene R L 2011 Nature 476 73

    [37]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Kirata K, Terashima T, Matsuda Y 2010 Phys. Rev. B 81 184519

    [38]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Comm. 7 12146

    [39]

    Phan G N, Nakayama K, Sugawara K, Sato T, Urato T, Tanabe Y, Tanigaki K, Nabeshima F, Imai Y, Maeda A, Takahashi T 2017 Phys. Rev. B 95 224507

    [40]

    Iimura S, Matsuishi S, Sato H, Hanna T, Muraba Y, Kim S W, Kim J E, Takata M, Hosono H 2012 Nat. Commun. 3 943

    [41]

    Yang J, Zhou R, Wei L L, Yang H X, Li J Q, Zhao Z X, Zheng G Q 2015 Chin. Phys. Lett. 32 107401

    [42]

    Das T, Panagopoulos C 2016 New J. Phys. 18 103033

    [43]

    Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G, Steglich F 2003 Science 302 2104

    [44]

    Das T, Balatsky A V 2013 New J. Phys. 15 093045

  • [1] 程金光. 高压调控的磁性量子临界点和非常规超导电性. 物理学报, 2017, 66(3): 037401. doi: 10.7498/aps.66.037401
    [2] 胡立发, 周廉, 张平祥, 王金星. 高温超导体的磁化与磁滞损耗. 物理学报, 2001, 50(7): 1359-1365. doi: 10.7498/aps.50.1359
    [3] 谭明秋, 陶向明. 高温超导体MgB2的电子结构研究. 物理学报, 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
    [4] 贺丽, 胡翔, 尹澜, 许恒毅, 徐晓林, 郭建栋, 李传义, 尹道乐. 高温超导体霍尔电阻和霍尔角在涡旋玻璃相变附近的普适标度律及统一霍尔电阻方程. 物理学报, 2009, 58(1): 417-420. doi: 10.7498/aps.58.417
    [5] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [6] 谭明秋, 陶向明, 徐小军, 何军辉, 叶高翔. MgCNi3的电子结构、光学性质与超导电性. 物理学报, 2003, 52(2): 463-467. doi: 10.7498/aps.52.463
    [7] 胡立发, ASulpice, PDixador, 张平祥, 李成山, 纪平, 滕鑫康, 汪金荣, 冯勇, 周廉. Bi2223带材的临界电流及交流损耗研究. 物理学报, 2002, 51(8): 1826-1831. doi: 10.7498/aps.51.1826
    [8] 陈晨, 张童, 封东来. 电子型FeSe基高温超导体的磁通束缚态与Majorana零能模. 物理学报, 2021, (): . doi: 10.7498/aps.70.20201673
    [9] 王勇刚, 逄焕刚, 刘楣. 高温超导体的电子比热研究. 物理学报, 2000, 49(3): 548-552. doi: 10.7498/aps.49.548
    [10] 王乃舟, 石孟竹, 雷彬, 陈仙辉. FeSe基超导体的探索与物性研究. 物理学报, 2018, 67(20): 207408. doi: 10.7498/aps.67.20181496
    [11] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [12] 李晓薇. 超导体/铁磁体绝缘层-超导体隧道结的直流Josephson效应. 物理学报, 2002, 51(8): 1821-1825. doi: 10.7498/aps.51.1821
    [13] 梁芳营. 高温超导体的热力学性质的研究. 物理学报, 2002, 51(4): 898-901. doi: 10.7498/aps.51.898
    [14] 赵忠贤, 刘福绥, 韩汝珊. 复合颗粒超导体的壳层模型. 物理学报, 1979, 28(2): 222-228. doi: 10.7498/aps.28.222
    [15] 杨志红, 施大宁, 罗达峰. 层间耦合与高温超导体角分辨光电子能谱和Ba位替代效应. 物理学报, 2004, 53(11): 3902-3908. doi: 10.7498/aps.53.3902
    [16] 杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎. 铁基超导体FeSe0.5Te0.5表面隧道谱的研究. 物理学报, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [17] 杜家驹, 姜建义, 王翔, 尹华清. 单相钇钡铜氧高温超导体的超导转变与内耗原位研究. 物理学报, 1988, 37(9): 1556-1559. doi: 10.7498/aps.37.1556
    [18] 杜胜望, 戴远东, 王世光. 用射频超导量子干涉器件测量高温超导体序参量的位相. 物理学报, 1999, 48(12): 2364-2368. doi: 10.7498/aps.48.2364
    [19] 裘新良, 辛绵荣, 罗长勋, 李成仁. Bi系超导体高Tc相的形成机制. 物理学报, 1992, 41(4): 649-654. doi: 10.7498/aps.41.649
    [20] 熊翰, 车广灿, 姚玉书, 倪泳明, 董成, 贾顺莲. 掺Ca-(RPr)-123系列超导体的高压合成. 物理学报, 2001, 50(9): 1783-1786. doi: 10.7498/aps.50.1783
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1066
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-08
  • 修回日期:  2018-07-25
  • 刊出日期:  2019-10-20

插层FeSe高温超导体的高压研究进展

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家研究中心, 北京 100190;
  • 2. 中国科学院大学, 北京 100190;
  • 3. 中国人民大学物理系, 北京光电功能材料和微纳器件重点实验室, 北京 100872
  • 通信作者: 程金光, jgcheng@iphy.ac.cn
    基金项目: 

    国家自然科学基金(批准号:11574377)、国家重点研发计划(批准号:2018YFA0305700,2018YFA0305800)和中国科学院前沿科学重点项目(批准号:QYZDB-SSW-SLH013,QYZDB-SSW-SLH001)资助的课题.

摘要: 通过对FeSe进行化学插层可以将其超导转变温度(Tc)从约8 K提高到40 K以上,实现高温超导电性.最近,我们对两种插层FeSe高温超导材料(Li0.84Fe0.16)OHFe0.98Se和Li0.36(NH3)yFe2Se2开展了高压调控研究,发现压力会首先抑制高温超导相(称为SC-I相),然后在临界压力Pc以上诱导出第二个高温超导相(称为SC-Ⅱ相),呈现出双拱形T-P超导相图.这两个体系的Pc分别约为5和2 GPa,两个体系SC-Ⅱ相的最高Tc分别可以达到约52和55 K,比相应SC-I相的初始Tc提高了10 K.对(Li0.84Fe0.16)OHFe0.98Se的正常态电输运性质分析表明,SC-I和SC-Ⅱ相的正常态分别具有费米液体和非费米液体行为,意味着这两个超导相可能存在显著差异.此外,还发现这两个体系的SC-Ⅱ相的Tc与霍尔系数倒数1/RH(载流子浓度ne)具有很好的线性依赖关系.对(Li0.84Fe0.16)OHFe0.98Se的高压X射线衍射测量排除了其在10 GPa以内发生结构相变的可能,因此Pc以上SC-Ⅱ相的出现和载流子浓度的增加很可能起源于压力导致的费米面重构.

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回