搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白光发光二极管用SrGdLiTeO6:Eu3+红色荧光粉的浓度猝灭和温度猝灭行为

赵旺 平兆艳 郑庆华 周薇薇

白光发光二极管用SrGdLiTeO6:Eu3+红色荧光粉的浓度猝灭和温度猝灭行为

赵旺, 平兆艳, 郑庆华, 周薇薇
PDF
导出引用
导出核心图
  • 采用高温固相法成功合成出双钙钛矿结构SrGd1-xLiTeO6xEu3+x=0.1–1.0)红色荧光粉,并采用X-射线衍射、漫反射光谱、光致发光光谱、电致发光光谱等测试手段对粉体的结构、光致发光特性以及发光二极管器件的光色电特性进行了系统研究.激发光谱、发射光谱和荧光衰减曲线测试结果表明Eu3+的最佳掺杂浓度为x=0.6,更大的掺杂量会引起浓度猝灭.基于van Uitert浓度猝灭公式,提出一种更准确的表达形式用于拟合、分析能量传递类型,揭示出电偶极-电偶极作用导致浓度猝灭.Judd-Ofelt理论计算得出较高的跃迁强度参数和量子效率,说明高度畸变的非心C1晶体场促使高效的超灵敏跃迁红光发射.在423 K时积分发光强度达到室温时的85.2%,热激活能经计算为0.2941 eV.基于此样品的发光二极管能够发出明亮的红光.综上所述,该类荧光粉表现出良好的发光效率、色纯度以及发光热稳定性,是一种潜在的近紫外激发白光发光二极管用红色荧光粉.
    • 基金项目: 安徽省自然科学基金(批准号:1708085QE91)、安徽省教育厅科研基金(批准号:gxyqZD2016259,gxyqZD2016260,KJ2016A673,gxbjZD37)、淮南市/校级科研创新团队(批准号:2016A24)和淮南师范学院校级研究项目(批准号:2015hsjyxm07,2015hsyxkc15,2017hsyxkc70)资助的课题.
    [1]

    Nakamura S, Senoh M, Iwasa N, Nagahama S 1995 Appl. Phys. Lett. 67 1868

    [2]

    Lin C C, Meijerink A, Liu R S 2016 J. Phys. Chem. Lett. 7 495

    [3]

    Pust P, Schmidt P J, Schnick W 2015 Nat. Mater. 14 454

    [4]

    Li S, Xie R J, Takeda T, Hirosaki N 2018 ECS J. Solid State SC 7 R3064

    [5]

    Pust P, Weiler V, Hecht C, Tücks A, Wochnik A S, Henß A, Wiechert D, Scheu C, Schmidt P J, Schnick W 2014 Nat. Mater. 13 891

    [6]

    Yoshimura K, Fukunaga H, Izumi M, Takahashi K, Xie R J, Hirosaki N 2017 Jpn. J. Appl. Phys. 56 041701

    [7]

    Meyer J, Tappe F 2015 Adv. Opt. Mater. 3 424

    [8]

    Chen D, Zhou Y, Zhong J 2016 RSC Adv. 6 86285

    [9]

    Judd B R 1966 J. Chem. Phys. 44 839

    [10]

    Li L, Chang W, Chen W, Feng Z, Zhao C, Jiang P, Wang Y, Zhou X, Suchocki A 2017 Ceram. Int. 43 2720

    [11]

    Sharits A R, Khoury J F, Woodward P M 2016 Inorg. Chem. 55 12383

    [12]

    Liu Q, Wang L, Huang W, Li X, Yu M, Zhang Q 2018 Ceram. Int. 44 1662

    [13]

    Li X, Liu Q, Huang W, Chen S, Wang L, Yu M, Zhang Q 2018 Ceram. Int. 44 1909

    [14]

    Zhong J S, Gao H B, Yuan Y J, Chen L F, Chen D Q, Ji Z G 2018 J. Alloys Compd. 735 2303

    [15]

    Yin X, Wang Y, Huang F, Xia Y, Wan D, Yao J 2011 J. Solid State Chem. 184 3324

    [16]

    Fu A, Guan A, Gao F, Zhang X, Zhou L, Meng Y, Pan H 2017 Opt. Laser Technol. 96 43

    [17]

    Yin X, Yao J, Wang Y, Zhao C, Huang F 2012 J. Lumin. 132 1701

    [18]

    Zhang L, Sun B, Shao C, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 17305

    [19]

    Sivakumar V, Varadaraju U V 2008 J. Solid State Chem. 181 3344

    [20]

    Li X, Li X, Wang X, Tong L, Cheng L, Sun J, Zhang J, Xu S, Chen B 2017 J. Mater. Sci. 52 935

    [21]

    Sun H, Zhang Q, Wang X, Zhang T 2014 Mater. Lett. 131 164

    [22]

    Liu Q, Wang L, Huang W, Zhang L, Yu M, Zhang Q 2017 J. Alloys Compd. 717 156

    [23]

    Li Q, Zhang L, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 15565

    [24]

    Jiao M, Yang C, Liu M, Xu Q, Yu Y, You H 2017 Opt. Mater. Express 7 2660

    [25]

    Liang Y, Noh H M, Ran W, Park S H, Choi B C, Jeong J H, Kim K H 2017 J. Alloys Compd. 716 56

    [26]

    Sletnes M, Lindgren M, Valmalette J C, Wagner N P, Grande T, Einarsrud M A 2016 J. Solid State Chem. 237 72

    [27]

    Yu R, Wang C, Chen J, Wu Y, Li H, Ma H 2014 ECS J. Solid State SC 3 R33

    [28]

    Nguyen H, Kim S, Yeo I, Mho S 2012 J. Electrochem. Soc. 159 J54

    [29]

    López M L, Alvarez I, Gaitán M, Jerez A, Pico C, Veiga M L 1993 Solid State Ionics 63–65 599

    [30]

    Amrithakrishnan B, Subodh G 2017 Mater. Res. Bull. 93 177

    [31]

    Park J H, Woodward P M 2000 Int. J. Inorg. Mater. 2 153

    [32]

    Korotkov A S, Atuchin V V 2010 J. Phys. Chem. Solids 71 958

    [33]

    Judd B R 1962 Phys. Rev. 127 750

    [34]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [35]

    Werts M H V, Jukes R T F, Verhoeven J W 2002 Phys. Chem. Chem. Phys. 4 1542

    [36]

    Tanner P A 2013 Chem. Soc. Rev. 42 5090

    [37]

    Wiglusz R J, Pazik R, Lukowiak A, Strek W 2011 Inorg. Chem. 50 1321

    [38]

    Jørgensen C K, Reisfeld R 1983 J. Less-Comm. Met. 93 107

    [39]

    Blasse G 1968 Phys. Lett. A 28 444

    [40]

    van Uitert L G 1967 J. Electrochem. Soc. 114 1048

    [41]

    Riseberg L A, Moos H W 1968 Phys. Rev. 174 429

    [42]

    Fonger W H, Struck C W 1970 J. Chem. Phys. 52 6364

    [43]

    Liu Q, Li X, Zhang B, Wang L, Zhang Q, Zhang L 2016 Ceram. Int. 42 15294

    [44]

    Liang J, Zhao S, Yuan X, Li Z 2018 Opt. Laser Technol. 101 451

  • [1]

    Nakamura S, Senoh M, Iwasa N, Nagahama S 1995 Appl. Phys. Lett. 67 1868

    [2]

    Lin C C, Meijerink A, Liu R S 2016 J. Phys. Chem. Lett. 7 495

    [3]

    Pust P, Schmidt P J, Schnick W 2015 Nat. Mater. 14 454

    [4]

    Li S, Xie R J, Takeda T, Hirosaki N 2018 ECS J. Solid State SC 7 R3064

    [5]

    Pust P, Weiler V, Hecht C, Tücks A, Wochnik A S, Henß A, Wiechert D, Scheu C, Schmidt P J, Schnick W 2014 Nat. Mater. 13 891

    [6]

    Yoshimura K, Fukunaga H, Izumi M, Takahashi K, Xie R J, Hirosaki N 2017 Jpn. J. Appl. Phys. 56 041701

    [7]

    Meyer J, Tappe F 2015 Adv. Opt. Mater. 3 424

    [8]

    Chen D, Zhou Y, Zhong J 2016 RSC Adv. 6 86285

    [9]

    Judd B R 1966 J. Chem. Phys. 44 839

    [10]

    Li L, Chang W, Chen W, Feng Z, Zhao C, Jiang P, Wang Y, Zhou X, Suchocki A 2017 Ceram. Int. 43 2720

    [11]

    Sharits A R, Khoury J F, Woodward P M 2016 Inorg. Chem. 55 12383

    [12]

    Liu Q, Wang L, Huang W, Li X, Yu M, Zhang Q 2018 Ceram. Int. 44 1662

    [13]

    Li X, Liu Q, Huang W, Chen S, Wang L, Yu M, Zhang Q 2018 Ceram. Int. 44 1909

    [14]

    Zhong J S, Gao H B, Yuan Y J, Chen L F, Chen D Q, Ji Z G 2018 J. Alloys Compd. 735 2303

    [15]

    Yin X, Wang Y, Huang F, Xia Y, Wan D, Yao J 2011 J. Solid State Chem. 184 3324

    [16]

    Fu A, Guan A, Gao F, Zhang X, Zhou L, Meng Y, Pan H 2017 Opt. Laser Technol. 96 43

    [17]

    Yin X, Yao J, Wang Y, Zhao C, Huang F 2012 J. Lumin. 132 1701

    [18]

    Zhang L, Sun B, Shao C, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 17305

    [19]

    Sivakumar V, Varadaraju U V 2008 J. Solid State Chem. 181 3344

    [20]

    Li X, Li X, Wang X, Tong L, Cheng L, Sun J, Zhang J, Xu S, Chen B 2017 J. Mater. Sci. 52 935

    [21]

    Sun H, Zhang Q, Wang X, Zhang T 2014 Mater. Lett. 131 164

    [22]

    Liu Q, Wang L, Huang W, Zhang L, Yu M, Zhang Q 2017 J. Alloys Compd. 717 156

    [23]

    Li Q, Zhang L, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 15565

    [24]

    Jiao M, Yang C, Liu M, Xu Q, Yu Y, You H 2017 Opt. Mater. Express 7 2660

    [25]

    Liang Y, Noh H M, Ran W, Park S H, Choi B C, Jeong J H, Kim K H 2017 J. Alloys Compd. 716 56

    [26]

    Sletnes M, Lindgren M, Valmalette J C, Wagner N P, Grande T, Einarsrud M A 2016 J. Solid State Chem. 237 72

    [27]

    Yu R, Wang C, Chen J, Wu Y, Li H, Ma H 2014 ECS J. Solid State SC 3 R33

    [28]

    Nguyen H, Kim S, Yeo I, Mho S 2012 J. Electrochem. Soc. 159 J54

    [29]

    López M L, Alvarez I, Gaitán M, Jerez A, Pico C, Veiga M L 1993 Solid State Ionics 63–65 599

    [30]

    Amrithakrishnan B, Subodh G 2017 Mater. Res. Bull. 93 177

    [31]

    Park J H, Woodward P M 2000 Int. J. Inorg. Mater. 2 153

    [32]

    Korotkov A S, Atuchin V V 2010 J. Phys. Chem. Solids 71 958

    [33]

    Judd B R 1962 Phys. Rev. 127 750

    [34]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [35]

    Werts M H V, Jukes R T F, Verhoeven J W 2002 Phys. Chem. Chem. Phys. 4 1542

    [36]

    Tanner P A 2013 Chem. Soc. Rev. 42 5090

    [37]

    Wiglusz R J, Pazik R, Lukowiak A, Strek W 2011 Inorg. Chem. 50 1321

    [38]

    Jørgensen C K, Reisfeld R 1983 J. Less-Comm. Met. 93 107

    [39]

    Blasse G 1968 Phys. Lett. A 28 444

    [40]

    van Uitert L G 1967 J. Electrochem. Soc. 114 1048

    [41]

    Riseberg L A, Moos H W 1968 Phys. Rev. 174 429

    [42]

    Fonger W H, Struck C W 1970 J. Chem. Phys. 52 6364

    [43]

    Liu Q, Li X, Zhang B, Wang L, Zhang Q, Zhang L 2016 Ceram. Int. 42 15294

    [44]

    Liang J, Zhao S, Yuan X, Li Z 2018 Opt. Laser Technol. 101 451

  • [1] 尹玉明, 赵伶玲. 离子浓度及表面结构对岩石孔隙内水流动特性的影响. 物理学报, 2020, 69(5): 054701. doi: 10.7498/aps.69.20191742
    [2] 刘文姝, 高润亮, 冯红梅, 刘悦悦, 黄怡, 王建波, 刘青芳. 真空磁场热处理温度对不同厚度的Ni88Cu12薄膜畴结构及磁性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191942
    [3] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [4] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计. 物理学报, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [5] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [6] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [7] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
  • 引用本文:
    Citation:
计量
  • 文章访问数:  62
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-13
  • 修回日期:  2018-10-21

白光发光二极管用SrGdLiTeO6:Eu3+红色荧光粉的浓度猝灭和温度猝灭行为

  • 淮南师范学院电子工程学院, 低温共烧材料省级重点实验室, 淮南 232038
    基金项目: 

    安徽省自然科学基金(批准号:1708085QE91)、安徽省教育厅科研基金(批准号:gxyqZD2016259,gxyqZD2016260,KJ2016A673,gxbjZD37)、淮南市/校级科研创新团队(批准号:2016A24)和淮南师范学院校级研究项目(批准号:2015hsjyxm07,2015hsyxkc15,2017hsyxkc70)资助的课题.

摘要: 采用高温固相法成功合成出双钙钛矿结构SrGd1-xLiTeO6xEu3+x=0.1–1.0)红色荧光粉,并采用X-射线衍射、漫反射光谱、光致发光光谱、电致发光光谱等测试手段对粉体的结构、光致发光特性以及发光二极管器件的光色电特性进行了系统研究.激发光谱、发射光谱和荧光衰减曲线测试结果表明Eu3+的最佳掺杂浓度为x=0.6,更大的掺杂量会引起浓度猝灭.基于van Uitert浓度猝灭公式,提出一种更准确的表达形式用于拟合、分析能量传递类型,揭示出电偶极-电偶极作用导致浓度猝灭.Judd-Ofelt理论计算得出较高的跃迁强度参数和量子效率,说明高度畸变的非心C1晶体场促使高效的超灵敏跃迁红光发射.在423 K时积分发光强度达到室温时的85.2%,热激活能经计算为0.2941 eV.基于此样品的发光二极管能够发出明亮的红光.综上所述,该类荧光粉表现出良好的发光效率、色纯度以及发光热稳定性,是一种潜在的近紫外激发白光发光二极管用红色荧光粉.

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回