搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ru(0001) 表面BaO吸附层的原子结构和氮分子的吸附性质

赵新新 陶向明 宓一鸣 季鑫 汪丽莉 吴建宝 谭明秋

Ru(0001) 表面BaO吸附层的原子结构和氮分子的吸附性质

赵新新, 陶向明, 宓一鸣, 季鑫, 汪丽莉, 吴建宝, 谭明秋
PDF
导出引用
  • 采用密度泛函理论研究了Ru(0001) /BaO表面的原子层结构和氮分子的吸附性质. 研究结果表明, 在低覆盖度下氧化钡倾向于以相同的构型形成Ru(0001) 表面原子层. 在此构型中, 氧原子位于表面p(1 1) 结构的hcp谷位, 而钡原子则位于同一p(1 1) 结构的顶位附近. 钌氧键键长等于0.209 nm, 比EXAFS的实验值大0.018 nm. 在Ru(0001) /BaO表面氮分子倾向吸附于钡原子附近. 相应位置的氮分子吸附能位于0.70到0.87 eV之间, 大于氧原子附近的氮分子吸附能. 钡原子附近的钌原子对氮分子具有更强的活化性能. 相应位置的氮分子拉伸振动频率等于1946 cm- 1, 比氧原子附近的最大分子振动频率小约130 cm-1. Ru(0001) /BaO表面氮分子键强度介于清洁Ru(0001) 和Ru(0001) /Ba表面之间. Ru(0001)/BaO表面不同位置的氮分子吸附性质差异是由钡和氧原子化学性质不同造成的. 表面钡原子的作用能够减少吸附氮分子的*轨道电子密度, 增加*轨道电子密度, 从而增强氮分子和钌原子间的轨道杂化作用, 弱化氮分子键.
    • 基金项目: 国家自然科学基金(批准号: 11074217)、 上海市教育委员会科研创新项目(批准号: 10YZ172) 和上海工程技术大学学科建设项目(批准号: 11XK11, 2011X34) 资助的课题.
    [1]

    Kowalczyk Z, Krukowski M, Rarog-Pilecka W, Szmigiel D, Zielinski J 2003 Appl. Catal. a-Gen. 248 67

    [2]

    Rossetti I, Pernicone N, Forni L 2001 Appl. Catal. a-Gen. 208 271

    [3]
    [4]
    [5]

    Rarog-Pilecka W, Miskiewicz E, Szmigiel D, Kowalczyk Z 2005 J. Catal. 231 11

    [6]
    [7]

    Zhong Z, HAika K 1998 Inorg. Chim. Acta 280 183

    [8]

    Zeng H S, Inazu K, Aika K 2002 J. Catal. 211 33

    [9]
    [10]
    [11]

    Truszkiewicz E, Rarog-Pilecka W, Schmidt-Szatowski K, Jodzis S, Wilczkowska E, Lomot D, Kaszkur Z, Karpinski Z, Kowalczyk Z 2009 J. Catal. 265 181

    [12]
    [13]

    Hansen T W, Wagner J B, Hansen P L, Dahl S, Topsoe H, Jacobsen C J H 2001 Science 294 1508

    [14]
    [15]

    Hansen T W, Hansen P L, Dahl S, Jacobsen C J H 2002 Catal. Lett. 84 7

    [16]

    Bielawa H, Hinrichsen O, Birkner A, Muhler M 2001 Ang. Chem. Inter. Ed. 40 1061

    [17]
    [18]
    [19]

    Guraya M, Sprenger S, Rarog-Pilecka W, Szmigiel D, Kowalczyk Z, Muhler M 2004 Appl. Surf. Sci. 238 77

    [20]

    McClaine B C, Siporin S E, Davis R J 2001 J. Phys. Chem. B 105 7525

    [21]
    [22]
    [23]

    Dahl S, Logadottir A, Egeberg R C, Larsen J H, Chorkendorff I, Tornqvist E, Norskov J K 1999 Phys. Rev. Lett. 83 1814

    [24]
    [25]

    Zhao X X, Tao X M, Chen W B, Cai J Q, Tan M Q 2005 Acta Phys. Sin. 54 5849 (in Chinese) [赵新新, 陶向明, 陈文斌, 蔡建秋, 谭明秋 2005 物理学报 54 5849]

    [26]
    [27]

    Zhao X X, Tao X M, Mi Y M, Chen S, Tan M Q 2009 Acta Phys. Chim. Sin. 25 2305 (in Chinese) [赵新新, 陶向明, 宓一鸣, 陈戍, 谭明秋 2009 物理化学学报 25 2305]

    [28]

    Zhao X X, Tao X M, Mi Y M, Wu J B, Wang L L, Tan M Q 2011 Acta Chim. Sin. 69 2201 (in Chinese) [赵新新, 陶向明, 宓一鸣, 吴建宝, 汪丽莉, 谭明秋 2011 化学学报 69 2201]

    [29]
    [30]
    [31]

    Kim Y K, Morgan G A, Yates J T 2005 Surf. Sci. 598 14

    [32]
    [33]

    Zambelli T, Trost J, Wintterlin J, Ertl G 1996 Phys. Rev. Lett. 76 795

    [34]
    [35]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15

    [36]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [37]
    [38]

    Blhl P E 1994 Phys. Rev. B 50 17953

    [39]
    [40]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [41]
    [42]
    [43]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [44]

    Kittel C 1976 Introduction to Solid State Physics (7th Ed.) (New York: John Wiley and Sons) pp23-57

    [45]
    [46]
    [47]

    Methfessel M, Hennig D, Scheffler M 1992 Phys. Rev. B 46 4816

    [48]

    Feibelman P J, Houston J E, Davis H L, Oneill D G 1994 Surf. Sci. 302 81

    [49]
    [50]

    Mannstadt W 2003 Surf. Sci. 525 119

    [51]
    [52]
    [53]

    Kim Y D, Seitsonen A P, Over H 2000 Surf. Sci. 465 1

    [54]

    Honkala K, Hellman A, Remediakis I N, Logadottir A, Carlsson A, Dahl S, Christensen C H, Norskov J K 2005 Science 307 555

    [55]
    [56]

    Hellman A, Honkala K, Remediakis I N, Logadottir A, Carlsson A, Dahl S, Christensen C H, Norskov J K 2009 Surf. Sci. 603 1731

    [57]
    [58]

    Cheng L, Ge Q F 2007 Surf. Sci. 601 L65

    [59]
    [60]
    [61]

    Bader R F W 1990 Atoms in Molecules-A Quantum Theory (Oxford: Oxford University Press) p116

    [62]

    Mortensen J J, Hammer B, Noskov J K 1998 Surf. Sci. 414 315

    [63]
  • [1]

    Kowalczyk Z, Krukowski M, Rarog-Pilecka W, Szmigiel D, Zielinski J 2003 Appl. Catal. a-Gen. 248 67

    [2]

    Rossetti I, Pernicone N, Forni L 2001 Appl. Catal. a-Gen. 208 271

    [3]
    [4]
    [5]

    Rarog-Pilecka W, Miskiewicz E, Szmigiel D, Kowalczyk Z 2005 J. Catal. 231 11

    [6]
    [7]

    Zhong Z, HAika K 1998 Inorg. Chim. Acta 280 183

    [8]

    Zeng H S, Inazu K, Aika K 2002 J. Catal. 211 33

    [9]
    [10]
    [11]

    Truszkiewicz E, Rarog-Pilecka W, Schmidt-Szatowski K, Jodzis S, Wilczkowska E, Lomot D, Kaszkur Z, Karpinski Z, Kowalczyk Z 2009 J. Catal. 265 181

    [12]
    [13]

    Hansen T W, Wagner J B, Hansen P L, Dahl S, Topsoe H, Jacobsen C J H 2001 Science 294 1508

    [14]
    [15]

    Hansen T W, Hansen P L, Dahl S, Jacobsen C J H 2002 Catal. Lett. 84 7

    [16]

    Bielawa H, Hinrichsen O, Birkner A, Muhler M 2001 Ang. Chem. Inter. Ed. 40 1061

    [17]
    [18]
    [19]

    Guraya M, Sprenger S, Rarog-Pilecka W, Szmigiel D, Kowalczyk Z, Muhler M 2004 Appl. Surf. Sci. 238 77

    [20]

    McClaine B C, Siporin S E, Davis R J 2001 J. Phys. Chem. B 105 7525

    [21]
    [22]
    [23]

    Dahl S, Logadottir A, Egeberg R C, Larsen J H, Chorkendorff I, Tornqvist E, Norskov J K 1999 Phys. Rev. Lett. 83 1814

    [24]
    [25]

    Zhao X X, Tao X M, Chen W B, Cai J Q, Tan M Q 2005 Acta Phys. Sin. 54 5849 (in Chinese) [赵新新, 陶向明, 陈文斌, 蔡建秋, 谭明秋 2005 物理学报 54 5849]

    [26]
    [27]

    Zhao X X, Tao X M, Mi Y M, Chen S, Tan M Q 2009 Acta Phys. Chim. Sin. 25 2305 (in Chinese) [赵新新, 陶向明, 宓一鸣, 陈戍, 谭明秋 2009 物理化学学报 25 2305]

    [28]

    Zhao X X, Tao X M, Mi Y M, Wu J B, Wang L L, Tan M Q 2011 Acta Chim. Sin. 69 2201 (in Chinese) [赵新新, 陶向明, 宓一鸣, 吴建宝, 汪丽莉, 谭明秋 2011 化学学报 69 2201]

    [29]
    [30]
    [31]

    Kim Y K, Morgan G A, Yates J T 2005 Surf. Sci. 598 14

    [32]
    [33]

    Zambelli T, Trost J, Wintterlin J, Ertl G 1996 Phys. Rev. Lett. 76 795

    [34]
    [35]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15

    [36]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [37]
    [38]

    Blhl P E 1994 Phys. Rev. B 50 17953

    [39]
    [40]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [41]
    [42]
    [43]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [44]

    Kittel C 1976 Introduction to Solid State Physics (7th Ed.) (New York: John Wiley and Sons) pp23-57

    [45]
    [46]
    [47]

    Methfessel M, Hennig D, Scheffler M 1992 Phys. Rev. B 46 4816

    [48]

    Feibelman P J, Houston J E, Davis H L, Oneill D G 1994 Surf. Sci. 302 81

    [49]
    [50]

    Mannstadt W 2003 Surf. Sci. 525 119

    [51]
    [52]
    [53]

    Kim Y D, Seitsonen A P, Over H 2000 Surf. Sci. 465 1

    [54]

    Honkala K, Hellman A, Remediakis I N, Logadottir A, Carlsson A, Dahl S, Christensen C H, Norskov J K 2005 Science 307 555

    [55]
    [56]

    Hellman A, Honkala K, Remediakis I N, Logadottir A, Carlsson A, Dahl S, Christensen C H, Norskov J K 2009 Surf. Sci. 603 1731

    [57]
    [58]

    Cheng L, Ge Q F 2007 Surf. Sci. 601 L65

    [59]
    [60]
    [61]

    Bader R F W 1990 Atoms in Molecules-A Quantum Theory (Oxford: Oxford University Press) p116

    [62]

    Mortensen J J, Hammer B, Noskov J K 1998 Surf. Sci. 414 315

    [63]
  • 引用本文:
    Citation:
计量
  • 文章访问数:  2999
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-12
  • 修回日期:  2011-12-08
  • 刊出日期:  2012-07-05

Ru(0001) 表面BaO吸附层的原子结构和氮分子的吸附性质

  • 1. 上海工程技术大学基础教学学院, 上海 201620;
  • 2. 浙江大学物理系, 杭州 310027
    基金项目: 

    国家自然科学基金(批准号: 11074217)、 上海市教育委员会科研创新项目(批准号: 10YZ172) 和上海工程技术大学学科建设项目(批准号: 11XK11, 2011X34) 资助的课题.

摘要: 采用密度泛函理论研究了Ru(0001) /BaO表面的原子层结构和氮分子的吸附性质. 研究结果表明, 在低覆盖度下氧化钡倾向于以相同的构型形成Ru(0001) 表面原子层. 在此构型中, 氧原子位于表面p(1 1) 结构的hcp谷位, 而钡原子则位于同一p(1 1) 结构的顶位附近. 钌氧键键长等于0.209 nm, 比EXAFS的实验值大0.018 nm. 在Ru(0001) /BaO表面氮分子倾向吸附于钡原子附近. 相应位置的氮分子吸附能位于0.70到0.87 eV之间, 大于氧原子附近的氮分子吸附能. 钡原子附近的钌原子对氮分子具有更强的活化性能. 相应位置的氮分子拉伸振动频率等于1946 cm- 1, 比氧原子附近的最大分子振动频率小约130 cm-1. Ru(0001) /BaO表面氮分子键强度介于清洁Ru(0001) 和Ru(0001) /Ba表面之间. Ru(0001)/BaO表面不同位置的氮分子吸附性质差异是由钡和氧原子化学性质不同造成的. 表面钡原子的作用能够减少吸附氮分子的*轨道电子密度, 增加*轨道电子密度, 从而增强氮分子和钌原子间的轨道杂化作用, 弱化氮分子键.

English Abstract

参考文献 (63)

目录

    /

    返回文章
    返回