搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的用于合成孔径雷达图像相干斑抑制的双边滤波参数配置方法

李金才 黄斌 彭宇行

一种改进的用于合成孔径雷达图像相干斑抑制的双边滤波参数配置方法

李金才, 黄斌, 彭宇行
PDF
导出引用
  • 双边滤波能够有效光滑合成孔径雷达图像, 同时保持边缘信息. 最优配置双边滤波参数一直非常困难. 本文作者曾提出了一种迭代参数配置方法, 具有高精度、高效率的特点, 但是该方法会出现迭代错误终止的情况. 本文提出了一种改进的参数配置方法, 能够确保获得最优折衷配置的参数, 并且给出了该方法收敛性的证明. 对真实合成孔径雷达图像的实验结果显示, 在迭代精度相同的情况下, 改进方法不仅能够获得与迭代方法相当的可视效果, 而且灰度值近似方差参数具有更高的精度; 随着迭代精度的提高, 改进方法比迭代方法有更快的收敛速度.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB302601);国家高技术研究发展计划(批准号: 2011AA01A202)和国家自然科学基金(批准号: 41175025, 41105063, 60803039, 60970033)资助的课题.
    [1]

    Jiang Z H, Huang S X, He R, Zhou C T 2011 Acta Phys. Sin. 60 068401 (in Chinese) [姜祝辉, 黄思训, 何然, 周晨腾 2011 物理学报 60 068401]

    [2]

    Jiang Z H, Huang S X, Shi H Q, Zhang W, Wang B 2011 Acta Phys. Sin. 60 108402 (in Chinese) [姜祝辉, 黄思训, 石汉青, 张伟, 王彪 2011 物理学报 60 108402]

    [3]

    Novak L M, Owirka G J, Weaver A L 1999 IEEE Trans. Aero. Elec. Sys. 35 157

    [4]

    Nico G, Leva D, Antonello G, Tarchi D 2004 IEEE Trans. Geosci. Remoto Sens. 42 1344

    [5]

    Siegert F, Hoffmann A A 2000 Remote. Sens. Environ. 72 64

    [6]

    McNairn H, Brisco B 2004 Can. J. Remote. Sens. 30 525

    [7]

    Thompson A A, Luscombe A P, James K, Fox P 2001 Proceedings of International Geoscience Remote Sensing Symposium Sydney, Australia, July 9-13 2001 p485

    [8]

    Askne J I H, Dammert P B G, Ulander L M H, Smith G 1997 IEEE Trans. Geosci. Remoto Sens. 35 25

    [9]

    Lee J S 1980 IEEE Trans. Pattern Anal. PAMI-2 165

    [10]

    Kuan D T, Sawchuk A A, Strand T C, Chavel P 1985 IEEE Trans. Anal. PAMI-7 165

    [11]

    Frost V S, Stiles J A, Shanmugan K S, Holtzman J C 1982 IEEE Trans. Pattern Anal. PAMI-4 157

    [12]

    Lee J S 1983 Computer Vision, Graphics, and Image Processing 24 255

    [13]

    Donoho D L 1995 IEEE Trans. Inform. Theory 41 613

    [14]

    Sveinsson J R, Benediktsson J A 2003 IEEE Trans. Geosci. Remoto Sens. 41 2404

    [15]

    Yu Y J, Acton S T 2002 IEEE Trans. Image Process. 11 1260

    [16]

    Aja-Fernández S, Alberola-López C 2006 IEEE Trans. Image Process. 15 2694

    [17]

    Krissian K, Westin C F, Kikinis R, Vosburgh K G 2007 IEEE Trans. Image Process. 16 1412

    [18]

    Liu G J, Zeng X P, Tian F C, Li Z Z, Chaibou K 2009 Signal Process. 89 2233

    [19]

    Tomasi C, Manduchi R 1998 Proceedings of the 6th IEEE International Conference on Computer Vision Bombay, India, January 4-7, 1998 p839

    [20]

    Zhang W G, Liu F, Jiao L C 2009 Electron. Lett. 45 781

    [21]

    Zhang W G, Zhang Q, Yang C S 2011 Electron. Lett. 47 286

    [22]

    Elad M 2002 IEEE Trans. Image Process. 11 1141

    [23]

    Barash D 2002 IEEE Trans. Pattern Anal. 24 844

    [24]

    Barash D, Comaniciu D 2004 Image. Vision Comput. 22 73

    [25]

    Li J C, Huang S X, Peng Y X, Zhang W M 2011 Proceedings of the 3th IEEE International Conference on Information Science and Engineering Yangzhou, China September 29-October 1, 2011 p778

    [26]

    Zhang B Y, Allebach J P 2008 IEEE Trans. Pattern Anal. 17 664

    [27]

    Li J C, Huang S X, Peng Y X, Zhang W M 2011 Proceedings of the 3th IEEE International Conference on Signal Processing Systems Yantai, China August 27-28, 2011 p305

    [28]

    Li J C, Huang S X, Peng Y X, Zhang W M 2012 Acta Phys. Sin. 61 119501 (in Chinese) [李金才, 黄思训, 彭宇行, 张卫民 2012 物理学报 61 119501]

    [29]

    Oliver C, Quegan S 2004 Understanding Synthetic Aperture Radar Images (Raleigh: SciTech Publishing, Inc) p95

    [30]

    Zhang H, Wang C, Zhang B, Wu F, Yan D M 2009 High-Resolution SAR Image Target Recognition (Beijing: Science Press) p43-44 (in Chinese) [张红, 王超, 张波, 吴樊, 闫冬梅 2009 高分辨率SAR图像目标识别 (北京: 科学出版社) 第43-44页]

    [31]

    Kao W C, Chen Y J, Wang S H, Hsu C C, Huang C W 2005 Proceedings of the 18th IPPR Conference on Computer Vision, Graphics and Image Processing Taipei, China August 21-23, 2005 p630

    [32]

    Lee J S 1980 IEEE Trans. Pattern Anal. 2 165

  • [1]

    Jiang Z H, Huang S X, He R, Zhou C T 2011 Acta Phys. Sin. 60 068401 (in Chinese) [姜祝辉, 黄思训, 何然, 周晨腾 2011 物理学报 60 068401]

    [2]

    Jiang Z H, Huang S X, Shi H Q, Zhang W, Wang B 2011 Acta Phys. Sin. 60 108402 (in Chinese) [姜祝辉, 黄思训, 石汉青, 张伟, 王彪 2011 物理学报 60 108402]

    [3]

    Novak L M, Owirka G J, Weaver A L 1999 IEEE Trans. Aero. Elec. Sys. 35 157

    [4]

    Nico G, Leva D, Antonello G, Tarchi D 2004 IEEE Trans. Geosci. Remoto Sens. 42 1344

    [5]

    Siegert F, Hoffmann A A 2000 Remote. Sens. Environ. 72 64

    [6]

    McNairn H, Brisco B 2004 Can. J. Remote. Sens. 30 525

    [7]

    Thompson A A, Luscombe A P, James K, Fox P 2001 Proceedings of International Geoscience Remote Sensing Symposium Sydney, Australia, July 9-13 2001 p485

    [8]

    Askne J I H, Dammert P B G, Ulander L M H, Smith G 1997 IEEE Trans. Geosci. Remoto Sens. 35 25

    [9]

    Lee J S 1980 IEEE Trans. Pattern Anal. PAMI-2 165

    [10]

    Kuan D T, Sawchuk A A, Strand T C, Chavel P 1985 IEEE Trans. Anal. PAMI-7 165

    [11]

    Frost V S, Stiles J A, Shanmugan K S, Holtzman J C 1982 IEEE Trans. Pattern Anal. PAMI-4 157

    [12]

    Lee J S 1983 Computer Vision, Graphics, and Image Processing 24 255

    [13]

    Donoho D L 1995 IEEE Trans. Inform. Theory 41 613

    [14]

    Sveinsson J R, Benediktsson J A 2003 IEEE Trans. Geosci. Remoto Sens. 41 2404

    [15]

    Yu Y J, Acton S T 2002 IEEE Trans. Image Process. 11 1260

    [16]

    Aja-Fernández S, Alberola-López C 2006 IEEE Trans. Image Process. 15 2694

    [17]

    Krissian K, Westin C F, Kikinis R, Vosburgh K G 2007 IEEE Trans. Image Process. 16 1412

    [18]

    Liu G J, Zeng X P, Tian F C, Li Z Z, Chaibou K 2009 Signal Process. 89 2233

    [19]

    Tomasi C, Manduchi R 1998 Proceedings of the 6th IEEE International Conference on Computer Vision Bombay, India, January 4-7, 1998 p839

    [20]

    Zhang W G, Liu F, Jiao L C 2009 Electron. Lett. 45 781

    [21]

    Zhang W G, Zhang Q, Yang C S 2011 Electron. Lett. 47 286

    [22]

    Elad M 2002 IEEE Trans. Image Process. 11 1141

    [23]

    Barash D 2002 IEEE Trans. Pattern Anal. 24 844

    [24]

    Barash D, Comaniciu D 2004 Image. Vision Comput. 22 73

    [25]

    Li J C, Huang S X, Peng Y X, Zhang W M 2011 Proceedings of the 3th IEEE International Conference on Information Science and Engineering Yangzhou, China September 29-October 1, 2011 p778

    [26]

    Zhang B Y, Allebach J P 2008 IEEE Trans. Pattern Anal. 17 664

    [27]

    Li J C, Huang S X, Peng Y X, Zhang W M 2011 Proceedings of the 3th IEEE International Conference on Signal Processing Systems Yantai, China August 27-28, 2011 p305

    [28]

    Li J C, Huang S X, Peng Y X, Zhang W M 2012 Acta Phys. Sin. 61 119501 (in Chinese) [李金才, 黄思训, 彭宇行, 张卫民 2012 物理学报 61 119501]

    [29]

    Oliver C, Quegan S 2004 Understanding Synthetic Aperture Radar Images (Raleigh: SciTech Publishing, Inc) p95

    [30]

    Zhang H, Wang C, Zhang B, Wu F, Yan D M 2009 High-Resolution SAR Image Target Recognition (Beijing: Science Press) p43-44 (in Chinese) [张红, 王超, 张波, 吴樊, 闫冬梅 2009 高分辨率SAR图像目标识别 (北京: 科学出版社) 第43-44页]

    [31]

    Kao W C, Chen Y J, Wang S H, Hsu C C, Huang C W 2005 Proceedings of the 18th IPPR Conference on Computer Vision, Graphics and Image Processing Taipei, China August 21-23, 2005 p630

    [32]

    Lee J S 1980 IEEE Trans. Pattern Anal. 2 165

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2764
  • PDF下载量:  488
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-27
  • 修回日期:  2012-07-04
  • 刊出日期:  2012-09-05

一种改进的用于合成孔径雷达图像相干斑抑制的双边滤波参数配置方法

  • 1. 国防科学技术大学计算机学院, 长沙 410073;
  • 2. 怀化学院计算机系, 怀化 418008
    基金项目: 

    国家重点基础研究发展计划(批准号: 2011CB302601)

    国家高技术研究发展计划(批准号: 2011AA01A202)和国家自然科学基金(批准号: 41175025, 41105063, 60803039, 60970033)资助的课题.

摘要: 双边滤波能够有效光滑合成孔径雷达图像, 同时保持边缘信息. 最优配置双边滤波参数一直非常困难. 本文作者曾提出了一种迭代参数配置方法, 具有高精度、高效率的特点, 但是该方法会出现迭代错误终止的情况. 本文提出了一种改进的参数配置方法, 能够确保获得最优折衷配置的参数, 并且给出了该方法收敛性的证明. 对真实合成孔径雷达图像的实验结果显示, 在迭代精度相同的情况下, 改进方法不仅能够获得与迭代方法相当的可视效果, 而且灰度值近似方差参数具有更高的精度; 随着迭代精度的提高, 改进方法比迭代方法有更快的收敛速度.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回