搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stage2沉积速率对低温生长CIGS薄膜特性及器件的影响

李志国 刘玮 何静婧 李祖亮 韩安军 张超 周志强 张毅 孙云

Stage2沉积速率对低温生长CIGS薄膜特性及器件的影响

李志国, 刘玮, 何静婧, 李祖亮, 韩安军, 张超, 周志强, 张毅, 孙云
PDF
导出引用
  • 研究了三步法第二步沉积速率对低温生长Cu(In,Ga)Se2薄膜结构、 电学特性和器件特性的影响. 通过改变第二步沉积速率发现, 提高沉积速率可以显著促进薄膜晶粒生长, 提高晶粒紧凑程度降低晶界复合, 同时有效改善两相分离现象, 提高电池的开路电压和短路电流, 有助于Cu(In,Ga)Se2电池光电转换效率的提高. 但同时研究表明, 随着第二步沉积速率的增加, 会促进暂态Cu2-xSe晶粒的生长, 引起Cu(In,Ga)Se2薄膜表面粗糙度增大, 并阻碍Na向Cu(In,Ga)Se2薄膜表面的扩散, 造成施主缺陷钝化效应降低, 薄膜载流子浓度下降和电阻率升高, 且过高的沉积速率会引起电池内部复合增加并产生分流路径, 造成开路电压下降进而引起电池效率恶化. 最终, 通过最佳化第二步沉积速率, 在衬底温度为420℃时, 得到最高转换效率为11.24%的Cu(In,Ga)Se2薄膜太阳电池.
    • 基金项目: 国家自然科学基金(批准号: 61076061, 60906033);天津市自然科学基金(批准号: 11JCYBJC01200)和国家高技术研究发展计划(批准号: 2004AA513020)
    [1]

    Repins I, Glynn S, Duenow J, Coutts T J, Metzger W K, Contreras M A 2009 Proceedings of Society of Photographic Instrumentation Engineers San Diego, California August 2-6, 2009 p74090M

    [2]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Progress in Photovoltaics: Research and Applications 19 894

    [3]

    Chirilă A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J, Seyrling S, Verma R, Nishiwaki S, Romanyuk Y E, Bilger G, Tiwari A N 2011 Nat. Mater. 10 857

    [4]

    Sharaman W N, Birkmire R W, Marsillac S, Marudachalam M, Orbey N, Russell T W F 1997 Proceedings of Photovoltaic Specialists Conference Anaheim, CA, September 29-Octobor 3, 1997 p331

    [5]

    Lundberg O, Bodegrd M, Stolt L 2003 Thin Solid Films 431 26

    [6]

    Chirila A, Seyrling S, Buecheler S, Guettler D, Nishiwaki S, Romanyuk Y E, Bilger G, Tiwari A N 2011 Progress in Photovoltaics: Research and Applications 20 209

    [7]

    Chirila A, Guettler D, Bremaud D 2009 Proceedings of Photovoltaic Specialists Conference Philadelphia, PA, June 7-12 2009 p812

    [8]

    Kessler J, Scholdstrom J, Stolt L 2000 Proceedings of Photovoltaic Specialists Conference Anchorage, AK, 2000 p509

    [9]

    Gabor A M, Tuttle J R, Bode M H, Franz A, Tennant A L, Contreras M A, Noufi R, Jensen D G, Hermann A M 1996 Solar Energy Materials and Solar Cells 41-42 247

    [10]

    Kohara N, Negami T, Nishitani M, Wada T 1995 Japanese Journal of Applied Physics 34 L1141

    [11]

    Nishiwaki S, Satoh T, Hayashi S, Hashimoto Y, Negami T, Wada T 1999 Journal of Materials Research 14 4514

    [12]

    Tuttle J R, Contreras M, Bode M H, Niles D, Albin D S, Matson R, Gabor A M, Tennant A, Duda A, Noufi R 1995 Journal of Applied Physics 77 153

    [13]

    Ao J P, Yang L, Yan L, Sun G Z, He Q, Zhou Z Q, Sun Y 2009 Acta Phys. Sin. 58 1870 (in Chinese) [敖建平, 杨亮, 闫礼, 孙国忠, 何青, 周志强, 孙云 2009 物理学报 58 1870]

    [14]

    Noufi R, Yanfa Y, Abu-Shama J, Jones K, Al-Jassim M, Keyes B, Alleman J, Ramanathan K 2002 Proceedings of Photovoltaic Specialists Conference New Orleans LA, ETATS-UNIS May 19-24, 2002 p508

    [15]

    Zhang L, He Q, Jiang W L, Liu F F, Li C J, Sun Y 2009 Solar Energy Materials and Solar Cells 93 114

    [16]

    Zhang L, He Q, Xu C M, Xue Y H, Li C J, Sun Y 2008 Chin. Phys. B 17 3138

    [17]

    Li Z, Nishijima M, Yamada A, Konagai M 2009 Physica Status Solidi (c) 6 1273

    [18]

    Contreras M A, Jones K M, Gedvilas L, Matson R 2000 Proceedings of 16th European Photovoltaic Solar Energy Conference and Exhibition Glasgow, U.K., May 1-5, 2000 p732

    [19]

    Nishiwaki S, Satoh T, Hashimoto Y, Negami T, Wada T 2001 Journal of Materials Research 16 394

    [20]

    Shafarman W N, Klenk R, McCandless B E 1996 Journal of Applied Physics 79 7324

    [21]

    Ruckh M, Schmid D, Kaiser M, Schäffler R, Walter T, Schock H W 1996 Solar Energy Materials and Solar Cells 41-42 335

    [22]

    Rudmann D, Kaelin M, Haug F J, Kurdesau F, Zogg H, Tiwari A N 2003 Proceedings of Photovoltaic Energy Conversion Osaka, Japan, May 18 2003 p376

    [23]

    Niles D W, Al-Jassim M, Ramanathan K 1999 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17 291

    [24]

    Lundberg O, Lu J, Rockett A, Edoff M, Stolt L 2003 Journal of Physics and Chemistry of Solids 64 1499

    [25]

    Guttler D, Chirila A, Seyrling S, Blosch P, Buecheler S, Fontane X 2010 Proceedings of Photovoltaic Specialists Conference Honolulu, HI, June 20-25, 2010 p3420

    [26]

    Wei S H, Zhang S B, Zunger A 1999 Journal of Applied Physics 85 7214

    [27]

    He J J, Liu W, Li Z G, Li B Y, Han A J, Li G M, Zhang C, Zhang Y, Sun Y 2012 Acta Phys. Sin. 61 198801 (in Chinese) [何静婧, 刘玮, 李志国, 李博研, 韩安军, 李光旻, 张超, 张毅, 孙云 2012 物理学报 61 198801]

    [28]

    Hegedus S S, Shafarman W N 2004 Progress in Photovoltaics: Research and Applications 12 155

    [29]

    Repins I, Contreras M A, Egaas B, DeHart C, Scharf J, Perkins C L, To B, Noufi R 2008 Progress in Photovoltaics: Research and Applications 16 235

    [30]

    Contreras M A, Ramanathan K, AbuShama J, Hasoon F, Young D L, Egaas B, Noufi R 2005 Progress in Photovoltaics: Research and Applications 13 209

    [31]

    Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T, Kitagawa M 2001 Solar Energy Materials and Solar Cells 67 83

    [32]

    Dullweber T, Rau U, Contreras M A, Noufi R, Schock H W 2000 Electron Devices 47 2249

  • [1]

    Repins I, Glynn S, Duenow J, Coutts T J, Metzger W K, Contreras M A 2009 Proceedings of Society of Photographic Instrumentation Engineers San Diego, California August 2-6, 2009 p74090M

    [2]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Progress in Photovoltaics: Research and Applications 19 894

    [3]

    Chirilă A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J, Seyrling S, Verma R, Nishiwaki S, Romanyuk Y E, Bilger G, Tiwari A N 2011 Nat. Mater. 10 857

    [4]

    Sharaman W N, Birkmire R W, Marsillac S, Marudachalam M, Orbey N, Russell T W F 1997 Proceedings of Photovoltaic Specialists Conference Anaheim, CA, September 29-Octobor 3, 1997 p331

    [5]

    Lundberg O, Bodegrd M, Stolt L 2003 Thin Solid Films 431 26

    [6]

    Chirila A, Seyrling S, Buecheler S, Guettler D, Nishiwaki S, Romanyuk Y E, Bilger G, Tiwari A N 2011 Progress in Photovoltaics: Research and Applications 20 209

    [7]

    Chirila A, Guettler D, Bremaud D 2009 Proceedings of Photovoltaic Specialists Conference Philadelphia, PA, June 7-12 2009 p812

    [8]

    Kessler J, Scholdstrom J, Stolt L 2000 Proceedings of Photovoltaic Specialists Conference Anchorage, AK, 2000 p509

    [9]

    Gabor A M, Tuttle J R, Bode M H, Franz A, Tennant A L, Contreras M A, Noufi R, Jensen D G, Hermann A M 1996 Solar Energy Materials and Solar Cells 41-42 247

    [10]

    Kohara N, Negami T, Nishitani M, Wada T 1995 Japanese Journal of Applied Physics 34 L1141

    [11]

    Nishiwaki S, Satoh T, Hayashi S, Hashimoto Y, Negami T, Wada T 1999 Journal of Materials Research 14 4514

    [12]

    Tuttle J R, Contreras M, Bode M H, Niles D, Albin D S, Matson R, Gabor A M, Tennant A, Duda A, Noufi R 1995 Journal of Applied Physics 77 153

    [13]

    Ao J P, Yang L, Yan L, Sun G Z, He Q, Zhou Z Q, Sun Y 2009 Acta Phys. Sin. 58 1870 (in Chinese) [敖建平, 杨亮, 闫礼, 孙国忠, 何青, 周志强, 孙云 2009 物理学报 58 1870]

    [14]

    Noufi R, Yanfa Y, Abu-Shama J, Jones K, Al-Jassim M, Keyes B, Alleman J, Ramanathan K 2002 Proceedings of Photovoltaic Specialists Conference New Orleans LA, ETATS-UNIS May 19-24, 2002 p508

    [15]

    Zhang L, He Q, Jiang W L, Liu F F, Li C J, Sun Y 2009 Solar Energy Materials and Solar Cells 93 114

    [16]

    Zhang L, He Q, Xu C M, Xue Y H, Li C J, Sun Y 2008 Chin. Phys. B 17 3138

    [17]

    Li Z, Nishijima M, Yamada A, Konagai M 2009 Physica Status Solidi (c) 6 1273

    [18]

    Contreras M A, Jones K M, Gedvilas L, Matson R 2000 Proceedings of 16th European Photovoltaic Solar Energy Conference and Exhibition Glasgow, U.K., May 1-5, 2000 p732

    [19]

    Nishiwaki S, Satoh T, Hashimoto Y, Negami T, Wada T 2001 Journal of Materials Research 16 394

    [20]

    Shafarman W N, Klenk R, McCandless B E 1996 Journal of Applied Physics 79 7324

    [21]

    Ruckh M, Schmid D, Kaiser M, Schäffler R, Walter T, Schock H W 1996 Solar Energy Materials and Solar Cells 41-42 335

    [22]

    Rudmann D, Kaelin M, Haug F J, Kurdesau F, Zogg H, Tiwari A N 2003 Proceedings of Photovoltaic Energy Conversion Osaka, Japan, May 18 2003 p376

    [23]

    Niles D W, Al-Jassim M, Ramanathan K 1999 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17 291

    [24]

    Lundberg O, Lu J, Rockett A, Edoff M, Stolt L 2003 Journal of Physics and Chemistry of Solids 64 1499

    [25]

    Guttler D, Chirila A, Seyrling S, Blosch P, Buecheler S, Fontane X 2010 Proceedings of Photovoltaic Specialists Conference Honolulu, HI, June 20-25, 2010 p3420

    [26]

    Wei S H, Zhang S B, Zunger A 1999 Journal of Applied Physics 85 7214

    [27]

    He J J, Liu W, Li Z G, Li B Y, Han A J, Li G M, Zhang C, Zhang Y, Sun Y 2012 Acta Phys. Sin. 61 198801 (in Chinese) [何静婧, 刘玮, 李志国, 李博研, 韩安军, 李光旻, 张超, 张毅, 孙云 2012 物理学报 61 198801]

    [28]

    Hegedus S S, Shafarman W N 2004 Progress in Photovoltaics: Research and Applications 12 155

    [29]

    Repins I, Contreras M A, Egaas B, DeHart C, Scharf J, Perkins C L, To B, Noufi R 2008 Progress in Photovoltaics: Research and Applications 16 235

    [30]

    Contreras M A, Ramanathan K, AbuShama J, Hasoon F, Young D L, Egaas B, Noufi R 2005 Progress in Photovoltaics: Research and Applications 13 209

    [31]

    Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T, Kitagawa M 2001 Solar Energy Materials and Solar Cells 67 83

    [32]

    Dullweber T, Rau U, Contreras M A, Noufi R, Schock H W 2000 Electron Devices 47 2249

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2560
  • PDF下载量:  455
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-29
  • 修回日期:  2012-09-04
  • 刊出日期:  2013-02-05

Stage2沉积速率对低温生长CIGS薄膜特性及器件的影响

  • 1. 天津市光电子薄膜器件与技术重点实验室, 南开大学信息技术科学学院, 天津 300071
    基金项目: 

    国家自然科学基金(批准号: 61076061, 60906033)

    天津市自然科学基金(批准号: 11JCYBJC01200)和国家高技术研究发展计划(批准号: 2004AA513020)

摘要: 研究了三步法第二步沉积速率对低温生长Cu(In,Ga)Se2薄膜结构、 电学特性和器件特性的影响. 通过改变第二步沉积速率发现, 提高沉积速率可以显著促进薄膜晶粒生长, 提高晶粒紧凑程度降低晶界复合, 同时有效改善两相分离现象, 提高电池的开路电压和短路电流, 有助于Cu(In,Ga)Se2电池光电转换效率的提高. 但同时研究表明, 随着第二步沉积速率的增加, 会促进暂态Cu2-xSe晶粒的生长, 引起Cu(In,Ga)Se2薄膜表面粗糙度增大, 并阻碍Na向Cu(In,Ga)Se2薄膜表面的扩散, 造成施主缺陷钝化效应降低, 薄膜载流子浓度下降和电阻率升高, 且过高的沉积速率会引起电池内部复合增加并产生分流路径, 造成开路电压下降进而引起电池效率恶化. 最终, 通过最佳化第二步沉积速率, 在衬底温度为420℃时, 得到最高转换效率为11.24%的Cu(In,Ga)Se2薄膜太阳电池.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回