搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hagena团簇尺度定律中锥形喷嘴的等效孔径

陈光龙 徐红霞 任莉 汪丽莉 曹云玖 张修丽 平云霞 Dong Eon Kim

Hagena团簇尺度定律中锥形喷嘴的等效孔径

陈光龙, 徐红霞, 任莉, 汪丽莉, 曹云玖, 张修丽, 平云霞, Dong Eon Kim
PDF
导出引用
导出核心图
  • 本文首先详细重演了锥形喷嘴的等效孔径deq, 并根据deq的定义给出了它与气体团簇喷流的径向宽度之间的依赖关系. 然后以高背压氩气团簇喷流为例, 通过成像喷流的Rayleigh 散射光的空间分布研究了不同背压下喷流的径向宽度, 并与Hagena 团簇尺度定律中直线流模型假设的喷流径向宽度进行了比较. 结果表明, Hagena 直线流模型假设的喷流径向宽度小于实际的径向宽度, 且实际宽度与气体背压有关. 进一步的研究表明, 直线流模型对喷流宽度的估计偏差导致对锥形喷嘴等效孔径的估计偏差, 这为Hagena 尺度定律估计团簇平均尺寸的偏差给出了一种可能的解释.
    • 基金项目: 上海市科学技术委员会(批准号: 11ZR1414500)和上海市教委科技创新项目(批准号: 11YZ216)资助的课题.
    [1]

    Shao Y L, Ditmire T, Tisch J W G, Springate E, Marangos J P, Hutchinson M H R 1996 Phys. Rev. Lett. 77 3343

    [2]

    Ditmire T, Tisch J W G, Springate E, Mason M B, Hay N, Smith R A, Marangos J, Hutchinson M H R 1997 Nature 386 54

    [3]

    McPherson A, Thompson B D, Borisov A B, Boyer K, Rhodes C K 1994 Nature 370 631

    [4]

    Zweiback J, Cowan T E, Hartley J H, Howell R, Wharton K B, Crane J K, Yanovsky V P, Hays G, Smith R A, Ditmire T 2002 Phys. Plasmas 9 3108

    [5]

    Ditmire T, Zweiback J, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489

    [6]

    Fukuda Y, Faenov A Ya, Tampo M, Pikuz T A, Nakamura T, Kando M, Hayashi Y, Yogo A, Sakaki H, Kameshima T, Pirozhkov A S, Ogura K, Mori M, Esirkepov T Zh, Koga J, Boldarev A S, Gasilov V A, Magunov A I, Yamauchi T, Kodama R, Bolton P R, Kato Y, Tajima T, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 165002

    [7]

    Kumarappan V, Kim K Y, Milchberg H M 2005 Phys. Rev. Lett. 94 205004

    [8]

    Mohamed T W, Chen G L, Kim J, Geng X T, Ahn J, Kim D E 2011 Opt. Express 19 15919

    [9]

    Chen G L, Geng X T, Mohamed T W, Xu H X, Mi Y M, Kim J, Kim D E 2012 Opt. Commu. 285 2627

    [10]

    Hagena O F 1992 Rev. Sci. Instrum. 63 2374

    [11]

    Hagena O F 1981 Surf. Sci. 106 101

    [12]

    Pauly H 2000 Atom Molecule and cluster Beams I (Springer-verlag Berlin Heidelberg New York) p81-85

    [13]

    Scoles G 1988 Atomic and Molecular Beam Methods (New York: Oxford University Press) p22

    [14]

    Smith R A, Ditmire T, Tisch J W G 1998 Rev. Sci. Instrum. 69 3798

    [15]

    Kim K Y, Kumarappan V, Michberg H M 2003 Appl. Phys. Lett. 83 3210

    [16]

    DeArmond F M, Suelzer J, Masters M F 2008 J. Appl. Phys. 103 093509

    [17]

    Dorchies F, Blasco F, Caillaud T, Stevefelt J, Stenz C, Boldarev A S, Gasilov, V A 2003 Phys. Rev. A 68 023201

    [18]

    Lu H Y, Ni G Q, Li R X, Xu Z Z 2010 J. Chem. Phys. 132 124303

    [19]

    Chen G L, Kim B, Ahn B, Kim D E 2010 J. Appl. Phys. 108 064329

    [20]

    Fu P T, Han J F, Mou Y H, Han D, Yang C W 2011 Acta Phys.Sin. 60 053602 (in Chinese) [付鹏涛, 韩纪锋, 牟艳红, 韩丹, 杨朝文 2011 物理学报 60 053602]

    [21]

    Gao X, Wang X, Shim B, Arefiev A V, Korzekwa R, Downer M C 2012 Appl. Phys. Lett. 100 064101

  • [1]

    Shao Y L, Ditmire T, Tisch J W G, Springate E, Marangos J P, Hutchinson M H R 1996 Phys. Rev. Lett. 77 3343

    [2]

    Ditmire T, Tisch J W G, Springate E, Mason M B, Hay N, Smith R A, Marangos J, Hutchinson M H R 1997 Nature 386 54

    [3]

    McPherson A, Thompson B D, Borisov A B, Boyer K, Rhodes C K 1994 Nature 370 631

    [4]

    Zweiback J, Cowan T E, Hartley J H, Howell R, Wharton K B, Crane J K, Yanovsky V P, Hays G, Smith R A, Ditmire T 2002 Phys. Plasmas 9 3108

    [5]

    Ditmire T, Zweiback J, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489

    [6]

    Fukuda Y, Faenov A Ya, Tampo M, Pikuz T A, Nakamura T, Kando M, Hayashi Y, Yogo A, Sakaki H, Kameshima T, Pirozhkov A S, Ogura K, Mori M, Esirkepov T Zh, Koga J, Boldarev A S, Gasilov V A, Magunov A I, Yamauchi T, Kodama R, Bolton P R, Kato Y, Tajima T, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 165002

    [7]

    Kumarappan V, Kim K Y, Milchberg H M 2005 Phys. Rev. Lett. 94 205004

    [8]

    Mohamed T W, Chen G L, Kim J, Geng X T, Ahn J, Kim D E 2011 Opt. Express 19 15919

    [9]

    Chen G L, Geng X T, Mohamed T W, Xu H X, Mi Y M, Kim J, Kim D E 2012 Opt. Commu. 285 2627

    [10]

    Hagena O F 1992 Rev. Sci. Instrum. 63 2374

    [11]

    Hagena O F 1981 Surf. Sci. 106 101

    [12]

    Pauly H 2000 Atom Molecule and cluster Beams I (Springer-verlag Berlin Heidelberg New York) p81-85

    [13]

    Scoles G 1988 Atomic and Molecular Beam Methods (New York: Oxford University Press) p22

    [14]

    Smith R A, Ditmire T, Tisch J W G 1998 Rev. Sci. Instrum. 69 3798

    [15]

    Kim K Y, Kumarappan V, Michberg H M 2003 Appl. Phys. Lett. 83 3210

    [16]

    DeArmond F M, Suelzer J, Masters M F 2008 J. Appl. Phys. 103 093509

    [17]

    Dorchies F, Blasco F, Caillaud T, Stevefelt J, Stenz C, Boldarev A S, Gasilov, V A 2003 Phys. Rev. A 68 023201

    [18]

    Lu H Y, Ni G Q, Li R X, Xu Z Z 2010 J. Chem. Phys. 132 124303

    [19]

    Chen G L, Kim B, Ahn B, Kim D E 2010 J. Appl. Phys. 108 064329

    [20]

    Fu P T, Han J F, Mou Y H, Han D, Yang C W 2011 Acta Phys.Sin. 60 053602 (in Chinese) [付鹏涛, 韩纪锋, 牟艳红, 韩丹, 杨朝文 2011 物理学报 60 053602]

    [21]

    Gao X, Wang X, Shim B, Arefiev A V, Korzekwa R, Downer M C 2012 Appl. Phys. Lett. 100 064101

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1690
  • PDF下载量:  334
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-02
  • 修回日期:  2013-03-24
  • 刊出日期:  2013-07-05

Hagena团簇尺度定律中锥形喷嘴的等效孔径

  • 1. 上海工程技术大学基础教学学院, 上海 201620;
  • 2. Department of Physics & Center for Attosecond Science and Technology (CASTECH), Pohang University of Science and Technology (POTECH), Pohang, Kyungbuk 790-784, Korea;
  • 3. Max Planck Center for Attosecond Science, Pohang, Kyungbuk 790-784, Korea
    基金项目: 

    上海市科学技术委员会(批准号: 11ZR1414500)和上海市教委科技创新项目(批准号: 11YZ216)资助的课题.

摘要: 本文首先详细重演了锥形喷嘴的等效孔径deq, 并根据deq的定义给出了它与气体团簇喷流的径向宽度之间的依赖关系. 然后以高背压氩气团簇喷流为例, 通过成像喷流的Rayleigh 散射光的空间分布研究了不同背压下喷流的径向宽度, 并与Hagena 团簇尺度定律中直线流模型假设的喷流径向宽度进行了比较. 结果表明, Hagena 直线流模型假设的喷流径向宽度小于实际的径向宽度, 且实际宽度与气体背压有关. 进一步的研究表明, 直线流模型对喷流宽度的估计偏差导致对锥形喷嘴等效孔径的估计偏差, 这为Hagena 尺度定律估计团簇平均尺寸的偏差给出了一种可能的解释.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回