搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于暗瞳图像的人眼视线估计

张太宁 孟春宁 刘润蓓 常胜江

基于暗瞳图像的人眼视线估计

张太宁, 孟春宁, 刘润蓓, 常胜江
PDF
导出引用
导出核心图
  • 虹膜外边缘受眼睑遮挡较为严重时, 会给虹膜中心的准确提取造成很大的困难. 为此, 提出利用放置在相机轴外的红外光源产生的暗瞳图像估计瞳孔中心, 该方法避免了提取虹膜外边缘遇到的遮挡问题. 首先利用角膜反射光斑在相机像面中的位置估计角膜所在球体中心的三维空间坐标, 作为眼球的平动信息; 然后考察瞳孔中心与角膜球体中心在相机成像面投影位置的相对偏移, 作为眼球的转动信息; 最后利用人工神经网络完成视线特征向量与注视点坐标间的映射. 在人眼区域定位的问题上, 利用两部大视场相机, 采用自适应增强算法和主动表观模型算法实现眼部区域的准确定位, 该步骤可以将提取反射光斑和瞳孔中心需要考虑的图像区域限定在较小的范围内. 实验结果表明, 本文视线估计方法在水平方向上的平均误差为0.62, 在竖直方向上的平均误差为1.05, 是解决视线点估计的有效方法.
    • 基金项目: 教育部博士点基金(批准号: 20090031110033)和国家自然科学基金(批准号: 61171027)资助的课题.
    [1]

    Liu S S, Rawicz A, Rezaei S, Ma T, Zhang C, Lin K, Wu E 2012 J. Med. Biol. Eng. 32 111

    [2]

    Lim C J, Kim D 2012 Sens. Actuators A: Phys. 185 151

    [3]

    Corcoran P M, Nanu F, Petrescu S, Bigioi P 2012 IEEE Trans. Consum. Electr. 58 347

    [4]

    Laura S S, Villanueva A, Cabeza R 2012 IEEE Trans. Biomed. Eng. 59 2235

    [5]

    Ebisawa Y 1998 IEEE Trans. Instrum. Meas. 47 948

    [6]

    Villanueva A, Cabeza R 2008 IEEE Trans. Biomed. Eng. 55 2812.

    [7]

    Nagamatsu T, Kamahara J, Iko T, Tanaka N 2008 Proceedings of the 2008 symposium on Eye tracking research & applications Savannah, Georgia, March 26-28, 2008 p95

    [8]

    Guestrin E D, Eizenman M 2006 IEEE Trans. Biomed. Eng. 53 1124

    [9]

    Zhu Z W, Ji Q 2007 IEEE Trans. Biomed. Eng. 54 2246

    [10]

    Nagamatsu T, Iwamoto Y, Kamahara J, Tanaka N, Yamamoto M 2010 Proceedings of the 2010 symposium on Eye tracking research & applications Austin, Texas, March 22-4, 2010 p255

    [11]

    Arun K S, Huang T S, Blostein S D 1987 IEEE Trans. Pattern Anal. 9 698

    [12]

    Pogalin E, Redert A, Patras I, Hendriks E A 2006 Proceedings of the 3rd International Symposium on 3D Data Processing, Visualization, and Transmission Chapel Hill, North Carolina, June 14-16, 2006 p57

    [13]

    Matthews I, Baker S 2004 Int. J. Comput. Vision 60 135

    [14]

    Zhang W, Cheng B, Zhang B 2012 Acta Phys. Sin. 61 060701 (in Chinese) [张伟, 成波, 张波 2012 物理学报 61 060701]

    [15]

    Zhang Z T, Zhang J S 2010 Chin. Phys. B 19 104601

    [16]

    Viola P, Jones M J 2004 Int. J. Comput. Vision 57 137

    [17]

    Zhang L, Chu R F, Xiang S M, Lian S C, Li S Z 2007 Proceedings of 2007 International Conference on Biometrics Seoul, Korea, August 27–29, 2007 p11

    [18]

    Wang J G, Sung E, Venkateswarlu R 2005 Comput. Vis. Image Und. 98 83

    [19]

    Zhang C, Chi J N, Zhang Z H, Wang Z L 2010 Acta Automatica Sinica 36 1051 (in Chinese) [张闯, 迟健男, 张朝晖, 王志良 2010 自动化学报 36 1051]

  • [1]

    Liu S S, Rawicz A, Rezaei S, Ma T, Zhang C, Lin K, Wu E 2012 J. Med. Biol. Eng. 32 111

    [2]

    Lim C J, Kim D 2012 Sens. Actuators A: Phys. 185 151

    [3]

    Corcoran P M, Nanu F, Petrescu S, Bigioi P 2012 IEEE Trans. Consum. Electr. 58 347

    [4]

    Laura S S, Villanueva A, Cabeza R 2012 IEEE Trans. Biomed. Eng. 59 2235

    [5]

    Ebisawa Y 1998 IEEE Trans. Instrum. Meas. 47 948

    [6]

    Villanueva A, Cabeza R 2008 IEEE Trans. Biomed. Eng. 55 2812.

    [7]

    Nagamatsu T, Kamahara J, Iko T, Tanaka N 2008 Proceedings of the 2008 symposium on Eye tracking research & applications Savannah, Georgia, March 26-28, 2008 p95

    [8]

    Guestrin E D, Eizenman M 2006 IEEE Trans. Biomed. Eng. 53 1124

    [9]

    Zhu Z W, Ji Q 2007 IEEE Trans. Biomed. Eng. 54 2246

    [10]

    Nagamatsu T, Iwamoto Y, Kamahara J, Tanaka N, Yamamoto M 2010 Proceedings of the 2010 symposium on Eye tracking research & applications Austin, Texas, March 22-4, 2010 p255

    [11]

    Arun K S, Huang T S, Blostein S D 1987 IEEE Trans. Pattern Anal. 9 698

    [12]

    Pogalin E, Redert A, Patras I, Hendriks E A 2006 Proceedings of the 3rd International Symposium on 3D Data Processing, Visualization, and Transmission Chapel Hill, North Carolina, June 14-16, 2006 p57

    [13]

    Matthews I, Baker S 2004 Int. J. Comput. Vision 60 135

    [14]

    Zhang W, Cheng B, Zhang B 2012 Acta Phys. Sin. 61 060701 (in Chinese) [张伟, 成波, 张波 2012 物理学报 61 060701]

    [15]

    Zhang Z T, Zhang J S 2010 Chin. Phys. B 19 104601

    [16]

    Viola P, Jones M J 2004 Int. J. Comput. Vision 57 137

    [17]

    Zhang L, Chu R F, Xiang S M, Lian S C, Li S Z 2007 Proceedings of 2007 International Conference on Biometrics Seoul, Korea, August 27–29, 2007 p11

    [18]

    Wang J G, Sung E, Venkateswarlu R 2005 Comput. Vis. Image Und. 98 83

    [19]

    Zhang C, Chi J N, Zhang Z H, Wang Z L 2010 Acta Automatica Sinica 36 1051 (in Chinese) [张闯, 迟健男, 张朝晖, 王志良 2010 自动化学报 36 1051]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2016
  • PDF下载量:  1181
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-06
  • 修回日期:  2013-03-20
  • 刊出日期:  2013-07-05

基于暗瞳图像的人眼视线估计

  • 1. 南开大学现代光学研究所, 天津 300071
    基金项目: 

    教育部博士点基金(批准号: 20090031110033)和国家自然科学基金(批准号: 61171027)资助的课题.

摘要: 虹膜外边缘受眼睑遮挡较为严重时, 会给虹膜中心的准确提取造成很大的困难. 为此, 提出利用放置在相机轴外的红外光源产生的暗瞳图像估计瞳孔中心, 该方法避免了提取虹膜外边缘遇到的遮挡问题. 首先利用角膜反射光斑在相机像面中的位置估计角膜所在球体中心的三维空间坐标, 作为眼球的平动信息; 然后考察瞳孔中心与角膜球体中心在相机成像面投影位置的相对偏移, 作为眼球的转动信息; 最后利用人工神经网络完成视线特征向量与注视点坐标间的映射. 在人眼区域定位的问题上, 利用两部大视场相机, 采用自适应增强算法和主动表观模型算法实现眼部区域的准确定位, 该步骤可以将提取反射光斑和瞳孔中心需要考虑的图像区域限定在较小的范围内. 实验结果表明, 本文视线估计方法在水平方向上的平均误差为0.62, 在竖直方向上的平均误差为1.05, 是解决视线点估计的有效方法.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回