搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子纠缠信令网Poisson生存模型及保真度分析

聂敏 张琳 刘晓慧

引用本文:
Citation:

量子纠缠信令网Poisson生存模型及保真度分析

聂敏, 张琳, 刘晓慧

Poisson survival model of quantum entanglement signaling network and fidelity analysis

Nie Min, Zhang Lin, Liu Xiao-Hui
PDF
导出引用
  • 量子信令态在传输过程中,由于环境影响产生退相干,造成信令损伤,从而会对构建高生存性的量子纠缠信令网产生影响. 为分析所造成的影响,建立了自然灾害下的量子信令网Poisson损伤模型. 首先,根据信令保真度定义了灾害级数;其次,提出信令态平均损伤量子比特数,并给出信令网生存函数;最后,研究了信令损伤的修复策略并进行仿真. 仿真结果表明,灾害级数的增加会大大降低信令网生存性,而增加信令转接点数和控制信令损伤上限可改善生存性,且该修复策略循环次数少,并可将信令态的保真度由0.6快速提高到0.9,信令网的生存函数由0.4提高到0.9.
    Quantum signaling states have decoherence because of the environment during the transmission. It causes signaling damage and thus will have impact on building high survivability quantum entanglement signaling network. In order to study the influence deeply, Poisson damage model of quantum signaling network is established. First, disaster magnitude is defined base on signaling fidelity. Second, average damage signaling quantum bits and survival function of quantum signaling network is put forward by basic quantum theory. At last, research on the signaling damage repair strategy and simulation is analyzed. Simulation results show that increasing of disaster magnitude will greatly reduce the signaling network survivability. However, increasing the nodes and controlling signaling damage caps may improve survivability. The repair strategy which costs small number of cycles can rapidly increase the signaling fidelity from 0.6 to 0.9 and the survival function of the signaling network from 0.4 to 0.9.
    • 基金项目: 国家自然科学基金(批准号:61172071)、陕西省自然科学基础研究计划(批准号:2010JM8021)和陕西省教育厅自然科学研究项目(批准号:2011JK1017)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61172071), the Natural Science Foundation Research Project of Shaanxi Province (Grant No. 2010JM8021), and the Education Natural Science Research Projects of Shaanxi Provincial Department (Grant No. 2011JK1017).
    [1]

    Liu X H, Pei C X, Nie M 2012 Chin. Phys. Lett. 27 120303

    [2]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [3]

    Sheng Y B, Zhou L, Cheng W W, Gong L Y, Zhao S M, Zheng B Y 2012 Chin. Phys. B 21 030307

    [4]

    Mei F, Yu Y F and Zhang Z M 2010 Chin. Phys. B 19 020308

    [5]

    Yin J, Yong H L, Wu Y P, Peng C Z 2011 Acta Phys. Sin. 60 060307 (in Chinese) [印娟, 雍海林, 吴裕平, 彭承志 2011 物理学报 60 060307]

    [6]

    Zhang S, Wang J, Tang C J 2012 Chin. Phys. B 21 060303

    [7]

    Yu X T, Xu J, Zhang Z C 2013 Chin. Phys. B 22 090311

    [8]

    Jin X M, RenJ G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Chen K, Peng C Z, Pan J W 2010 Nature Photonics 4 376

    [9]

    Lian T, Nie M 2012 Acta Photonica Sinica 41 1251 (in Chinese) [连涛, 聂敏 2012 光子学报 41 1251]

    [10]

    Quan D X, Pei C X, Liu D, Zhao N 2010 Acta Phys. Sin. 59 2493 (in Chinese) [权东晓, 裴昌幸, 刘丹, 赵楠 2010 物理学报 59 2493]

    [11]

    Pfennigbauer M, Aspelmeyer M, Leeb W,Baister G, Dreischer T, Jennewein T, Neckamm G, Perdigues J, Weinfurter H, Zeilinger 2005 Journal of Optical Networking 4 549

    [12]

    Huang S, Xu Y, Zhang L 2007 Computer Engineering 33 22 (in Chinese) [黄松, 许勇, 张凌 2007 计算机工程 33 22]

    [13]

    Yi Y H, Nie M, Pei C X 2012 Journal of Xidian University(Natural Science Edition) 39 29 (in Chinese) [易运晖, 聂敏, 裴昌幸 2012 西安电子科技大学学报(自然科学版) 39 29]

    [14]

    Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S, Sanpera A 1996 Phys. Rev. Lett. 77 2818

    [15]

    Long G L, Deng F G, Zeng J Y 2011 Recent Progress in Quantum Mechanics(Fifth Volume) (Beijing: Tsinghua University Press) p258(in Chinese) [龙桂鲁, 邓富国, 曾谨言 2011 量子力学新进展(第五辑)(北京: 清华大学出版社) 第258页]

  • [1]

    Liu X H, Pei C X, Nie M 2012 Chin. Phys. Lett. 27 120303

    [2]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [3]

    Sheng Y B, Zhou L, Cheng W W, Gong L Y, Zhao S M, Zheng B Y 2012 Chin. Phys. B 21 030307

    [4]

    Mei F, Yu Y F and Zhang Z M 2010 Chin. Phys. B 19 020308

    [5]

    Yin J, Yong H L, Wu Y P, Peng C Z 2011 Acta Phys. Sin. 60 060307 (in Chinese) [印娟, 雍海林, 吴裕平, 彭承志 2011 物理学报 60 060307]

    [6]

    Zhang S, Wang J, Tang C J 2012 Chin. Phys. B 21 060303

    [7]

    Yu X T, Xu J, Zhang Z C 2013 Chin. Phys. B 22 090311

    [8]

    Jin X M, RenJ G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Chen K, Peng C Z, Pan J W 2010 Nature Photonics 4 376

    [9]

    Lian T, Nie M 2012 Acta Photonica Sinica 41 1251 (in Chinese) [连涛, 聂敏 2012 光子学报 41 1251]

    [10]

    Quan D X, Pei C X, Liu D, Zhao N 2010 Acta Phys. Sin. 59 2493 (in Chinese) [权东晓, 裴昌幸, 刘丹, 赵楠 2010 物理学报 59 2493]

    [11]

    Pfennigbauer M, Aspelmeyer M, Leeb W,Baister G, Dreischer T, Jennewein T, Neckamm G, Perdigues J, Weinfurter H, Zeilinger 2005 Journal of Optical Networking 4 549

    [12]

    Huang S, Xu Y, Zhang L 2007 Computer Engineering 33 22 (in Chinese) [黄松, 许勇, 张凌 2007 计算机工程 33 22]

    [13]

    Yi Y H, Nie M, Pei C X 2012 Journal of Xidian University(Natural Science Edition) 39 29 (in Chinese) [易运晖, 聂敏, 裴昌幸 2012 西安电子科技大学学报(自然科学版) 39 29]

    [14]

    Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S, Sanpera A 1996 Phys. Rev. Lett. 77 2818

    [15]

    Long G L, Deng F G, Zeng J Y 2011 Recent Progress in Quantum Mechanics(Fifth Volume) (Beijing: Tsinghua University Press) p258(in Chinese) [龙桂鲁, 邓富国, 曾谨言 2011 量子力学新进展(第五辑)(北京: 清华大学出版社) 第258页]

计量
  • 文章访问数:  4764
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-05
  • 修回日期:  2013-08-16
  • 刊出日期:  2013-12-05

/

返回文章
返回