搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuHg2Ti型Ti2Cr基合金的电子结构、能隙起源和磁性研究

贾红英 代学芳 王立英 刘然 王啸天 李朋朋 崔玉亭 王文洪 吴光恒 刘国栋

CuHg2Ti型Ti2Cr基合金的电子结构、能隙起源和磁性研究

贾红英, 代学芳, 王立英, 刘然, 王啸天, 李朋朋, 崔玉亭, 王文洪, 吴光恒, 刘国栋
PDF
导出引用
导出核心图
  • 利用第一性原理计算方法,研究了CuHg2Ti结构下Ti2CrK(K=Sb,Ge,Sn,Sb,Bi)系列合金的电子结构、能隙起源和磁性. 研究发现:Ti2CrK(K=Si,Ge)合金是普通半导体材料;Ti2CrK(K=Si,Bi)合金是亚铁磁性半金属材料,其半金属性能隙受到Sb 和Bi 原子s 态的直接影响;Ti2CrSn合金是完全补偿的亚铁磁性半导体. 基于Ti2CrSn合金两个自旋方向上的能隙起源不同,通过Si和Ge替换掺杂同族Sn元素调制能隙的宽度,获得了完全补偿亚铁磁性自旋无能隙材料;通过Fe和Mn替换掺杂过渡族Cr元素获得了一系列半金属材料. Ti2Cr1-xFexSn 和Ti2Cr1-xMnxSn合金都具有亚铁磁性. 所研究的这些半金属性合金的分子磁矩Mtotal 与总的价电子数Zt服从Mtotal=Zt-18 规则.
    • 基金项目: 国家自然科学基金(批准号:51271071,11074160)、教育部新世纪优秀人才支持计划(批准号:NCET-10-0126)、河北省应用基础研究计划重点基础研究项目(批准号:12965136D)、河北省自然科学基金(批准号:E2013202181)和河北省高等学校科学技术研究青年基金(批准号:Q2012008)资助的课题.
    [1]

    Ishida S, Masaki T, Fujii S, Asano S 1998 Physica B 245 1

    [2]

    Picozzi S, Continenza A, Freeman A J 2002 Phys. Rev. B 66 094421

    [3]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [4]

    Heusler F, Starck W, Haupt E 1903 Verh. Deutsch. Phys. Ges. 5 220

    [5]

    Zhu W, Liu E K, Zhang C Z, Qin Y B, Luo H Z, Wang W H, Du Z W, Li J Q, Wu G H 2012 Acta Phys. Sin. 61 027502 (in Chinese)[朱伟, 刘恩克, 张常在, 秦元斌, 罗鸿志, 王文洪, 杜志伟, 李建奇, 吴光恒 2012 物理学报 61 027502]

    [6]

    Wen L W, Wang Y J, Pei H X, Zhi L H 2011 J. Phys.: Atom. Mol. Phys. 28 333 (in Chinese) [文黎巍, 王宇杰, 裴慧霞, 支联合 2011 原子与分子物理学报 28 333]

    [7]

    Tsidilkovski Isaak M 1996 Electron Spectrum of Gapless Semiconductors (New York: Springer)

    [8]

    Kurzman J A, Miao M S, Seshadri R 2011 J. Phys.: Condens. Matter 23 465501

    [9]

    Chen S W, Huang S C, Guo G Y, Lee J M, Chiang S, Chen W C, Liang Y C, Lu K T, Chen J M 2011 Appl. Phys. Lett. 99 012103

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [11]

    Wang X L 2008 Phys. Rev. Lett. 100 156404

    [12]

    Wang X, Peleckis G, Zhang C, Kimura H, Dou S 2009 Adv. Mat. 21 2196

    [13]

    Wang X, Dou X, Zhang C 2010 NPG Asia Mater. 2 31

    [14]

    Liu G D, Dai X F, Liu H Y, Chen J L, Li Y X, Xiao G, Wu G H 2008 Phys. Rev. B 77 014424

    [15]

    Ouardi S, Fecher G H, Felser C 2013 Phys. Rev. Lett. 110 100401

    [16]

    Skaftouros S, Ozdogan K, Sasioglu E, Galanakis I 2013 Appl. Phys. Lett. 102 022402

    [17]

    Xu G Z, Liu E K, Du Y, Li G J, Liu G D, Wang W H, Wu G H 2013 Europhys. Lett. 102 17007

    [18]

    Shi S Q, Wysocki A L, Belashchenko K D 2009 Phys. Rev. B 79 104404

    [19]

    Gong Z Z, Ji G F, Zhao F, Zhang L 2011 Chin. Phys. B 20 047103

    [20]

    Miura Y, Nagano K, Shirai M 2004 Phys. Rev. B 69 144413

    [21]

    Umetsu R Y, Kobayashi K, Kainuma R, Fujita A, Fukamichi K, Ishida K, Sakuma A 2004 Appl. Phys. Lett. 85 2011

    [22]

    Wurmehl S, Fecher G H, Kandpal H C, Ksenofontov V, Felser C 2006 Appl. Phys. Lett. 88 032503

    [23]

    Chioncel L, Arrigoni E, Katsnelson M I, Lichtenstein A I 2009 Phys. Rev. B 79 125123

    [24]

    Dai X F, Liu Z H, Yu S Y, Chen J L, Wu G H, Wang X Q, Liu G D 2007 Acta Phys. Sin. 56 1686 (in Chinese)[代学芳, 柳祝红, 于淑云, 陈京兰, 吴光恒, 王新强, 刘国栋 2007 物理学报 56 1686]

    [25]

    Dai X F, Liu Z H, Yu S Y, Chen J L, Wu G H, Wang X Q, Liu G D 2006 Acta Phys. Sin. 55 4883 (in Chinese)[代学芳, 柳祝红, 于淑云, 陈京兰, 吴光恒, 王新强, 刘国栋 2006 物理学报 55 4883]

    [26]

    Dai X F, Liu G D, Liu Z H, Wu G H, Chen J L 2005 Acta Phys. Sin. 54 4884 (in Chinese) [代学芳, 刘国栋, 柳祝红, 吴光恒, 陈京兰 2005 物理学报 54 4884]

    [27]

    Liu H Y, Yan L Q, Qu J P, Li Y X, Dai X F, Chen J L, Wu G H 2006 Acta Phys. Sin. 55 2534 (in Chinese) [刘何燕, 闫丽琴, 曲静萍, 李养贤, 代学芳, 陈京兰, 吴光恒 2006 物理学报 55 2534]

    [28]

    Xing N S, Gong Y H, Zhang W, Dong J M, Li H 2009 Comput. Mater. Sci. 45 489

    [29]

    Zhang X M, Dai X F, Chen G F, Liu H Y, Luo H Z, Li Y, Wang W H, Wu G H, Liu G D 2012 Comput. Mater. Sci. 59 1

    [30]

    Wei X P, Deng J B, Mao G Y, Chu S B, Hu X R 2012 Intermetallics 29 86

    [31]

    Feng L, Tang C C, Wang S J, He W C 2011 J. Alloys Compd. 509 5187

    [32]

    Ahmadian F 2012 J. Supercond. Nov. Magn. 25 1589

    [33]

    Galanakis I, Dederichs P H, Papanikolaou N 2002 Phys. Rev. B 66 174429

    [34]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoolous J D 1992 Rev. Mod. Phys. 64 1045

    [35]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [36]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [37]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Fiolhais C 1992 Phys. Rev. B 46 6671

    [38]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [39]

    Pyykkö P, Atsumi M 2009 Chem. Eur. J. 15 12770

    [40]

    Kbler J, Williams A R, Sommers C B 1983 Phys. Rev. B 28 1745

  • [1]

    Ishida S, Masaki T, Fujii S, Asano S 1998 Physica B 245 1

    [2]

    Picozzi S, Continenza A, Freeman A J 2002 Phys. Rev. B 66 094421

    [3]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [4]

    Heusler F, Starck W, Haupt E 1903 Verh. Deutsch. Phys. Ges. 5 220

    [5]

    Zhu W, Liu E K, Zhang C Z, Qin Y B, Luo H Z, Wang W H, Du Z W, Li J Q, Wu G H 2012 Acta Phys. Sin. 61 027502 (in Chinese)[朱伟, 刘恩克, 张常在, 秦元斌, 罗鸿志, 王文洪, 杜志伟, 李建奇, 吴光恒 2012 物理学报 61 027502]

    [6]

    Wen L W, Wang Y J, Pei H X, Zhi L H 2011 J. Phys.: Atom. Mol. Phys. 28 333 (in Chinese) [文黎巍, 王宇杰, 裴慧霞, 支联合 2011 原子与分子物理学报 28 333]

    [7]

    Tsidilkovski Isaak M 1996 Electron Spectrum of Gapless Semiconductors (New York: Springer)

    [8]

    Kurzman J A, Miao M S, Seshadri R 2011 J. Phys.: Condens. Matter 23 465501

    [9]

    Chen S W, Huang S C, Guo G Y, Lee J M, Chiang S, Chen W C, Liang Y C, Lu K T, Chen J M 2011 Appl. Phys. Lett. 99 012103

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [11]

    Wang X L 2008 Phys. Rev. Lett. 100 156404

    [12]

    Wang X, Peleckis G, Zhang C, Kimura H, Dou S 2009 Adv. Mat. 21 2196

    [13]

    Wang X, Dou X, Zhang C 2010 NPG Asia Mater. 2 31

    [14]

    Liu G D, Dai X F, Liu H Y, Chen J L, Li Y X, Xiao G, Wu G H 2008 Phys. Rev. B 77 014424

    [15]

    Ouardi S, Fecher G H, Felser C 2013 Phys. Rev. Lett. 110 100401

    [16]

    Skaftouros S, Ozdogan K, Sasioglu E, Galanakis I 2013 Appl. Phys. Lett. 102 022402

    [17]

    Xu G Z, Liu E K, Du Y, Li G J, Liu G D, Wang W H, Wu G H 2013 Europhys. Lett. 102 17007

    [18]

    Shi S Q, Wysocki A L, Belashchenko K D 2009 Phys. Rev. B 79 104404

    [19]

    Gong Z Z, Ji G F, Zhao F, Zhang L 2011 Chin. Phys. B 20 047103

    [20]

    Miura Y, Nagano K, Shirai M 2004 Phys. Rev. B 69 144413

    [21]

    Umetsu R Y, Kobayashi K, Kainuma R, Fujita A, Fukamichi K, Ishida K, Sakuma A 2004 Appl. Phys. Lett. 85 2011

    [22]

    Wurmehl S, Fecher G H, Kandpal H C, Ksenofontov V, Felser C 2006 Appl. Phys. Lett. 88 032503

    [23]

    Chioncel L, Arrigoni E, Katsnelson M I, Lichtenstein A I 2009 Phys. Rev. B 79 125123

    [24]

    Dai X F, Liu Z H, Yu S Y, Chen J L, Wu G H, Wang X Q, Liu G D 2007 Acta Phys. Sin. 56 1686 (in Chinese)[代学芳, 柳祝红, 于淑云, 陈京兰, 吴光恒, 王新强, 刘国栋 2007 物理学报 56 1686]

    [25]

    Dai X F, Liu Z H, Yu S Y, Chen J L, Wu G H, Wang X Q, Liu G D 2006 Acta Phys. Sin. 55 4883 (in Chinese)[代学芳, 柳祝红, 于淑云, 陈京兰, 吴光恒, 王新强, 刘国栋 2006 物理学报 55 4883]

    [26]

    Dai X F, Liu G D, Liu Z H, Wu G H, Chen J L 2005 Acta Phys. Sin. 54 4884 (in Chinese) [代学芳, 刘国栋, 柳祝红, 吴光恒, 陈京兰 2005 物理学报 54 4884]

    [27]

    Liu H Y, Yan L Q, Qu J P, Li Y X, Dai X F, Chen J L, Wu G H 2006 Acta Phys. Sin. 55 2534 (in Chinese) [刘何燕, 闫丽琴, 曲静萍, 李养贤, 代学芳, 陈京兰, 吴光恒 2006 物理学报 55 2534]

    [28]

    Xing N S, Gong Y H, Zhang W, Dong J M, Li H 2009 Comput. Mater. Sci. 45 489

    [29]

    Zhang X M, Dai X F, Chen G F, Liu H Y, Luo H Z, Li Y, Wang W H, Wu G H, Liu G D 2012 Comput. Mater. Sci. 59 1

    [30]

    Wei X P, Deng J B, Mao G Y, Chu S B, Hu X R 2012 Intermetallics 29 86

    [31]

    Feng L, Tang C C, Wang S J, He W C 2011 J. Alloys Compd. 509 5187

    [32]

    Ahmadian F 2012 J. Supercond. Nov. Magn. 25 1589

    [33]

    Galanakis I, Dederichs P H, Papanikolaou N 2002 Phys. Rev. B 66 174429

    [34]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoolous J D 1992 Rev. Mod. Phys. 64 1045

    [35]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [36]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [37]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Fiolhais C 1992 Phys. Rev. B 46 6671

    [38]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [39]

    Pyykkö P, Atsumi M 2009 Chem. Eur. J. 15 12770

    [40]

    Kbler J, Williams A R, Sommers C B 1983 Phys. Rev. B 28 1745

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1512
  • PDF下载量:  450
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-10
  • 修回日期:  2014-02-20
  • 刊出日期:  2014-05-05

CuHg2Ti型Ti2Cr基合金的电子结构、能隙起源和磁性研究

  • 1. 河北工业大学材料科学与工程学院, 天津 300130;
  • 2. 重庆师范大学物理与电子工程学院, 重庆 400044;
  • 3. 中国科学院物理研究所 北京凝聚态物理国家实验室, 北京 100190
    基金项目: 

    国家自然科学基金(批准号:51271071,11074160)、教育部新世纪优秀人才支持计划(批准号:NCET-10-0126)、河北省应用基础研究计划重点基础研究项目(批准号:12965136D)、河北省自然科学基金(批准号:E2013202181)和河北省高等学校科学技术研究青年基金(批准号:Q2012008)资助的课题.

摘要: 利用第一性原理计算方法,研究了CuHg2Ti结构下Ti2CrK(K=Sb,Ge,Sn,Sb,Bi)系列合金的电子结构、能隙起源和磁性. 研究发现:Ti2CrK(K=Si,Ge)合金是普通半导体材料;Ti2CrK(K=Si,Bi)合金是亚铁磁性半金属材料,其半金属性能隙受到Sb 和Bi 原子s 态的直接影响;Ti2CrSn合金是完全补偿的亚铁磁性半导体. 基于Ti2CrSn合金两个自旋方向上的能隙起源不同,通过Si和Ge替换掺杂同族Sn元素调制能隙的宽度,获得了完全补偿亚铁磁性自旋无能隙材料;通过Fe和Mn替换掺杂过渡族Cr元素获得了一系列半金属材料. Ti2Cr1-xFexSn 和Ti2Cr1-xMnxSn合金都具有亚铁磁性. 所研究的这些半金属性合金的分子磁矩Mtotal 与总的价电子数Zt服从Mtotal=Zt-18 规则.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回