搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag纳米颗粒增强的Ho3+/Tm3+共掺铋锗酸盐玻璃的2m发光研究

薛冰 许银生 李烟塬 戚嘉妮 鲁珊珊 鲁克伦 陈丽艳 张绍骞 戴世勋

Ag纳米颗粒增强的Ho3+/Tm3+共掺铋锗酸盐玻璃的2m发光研究

薛冰, 许银生, 李烟塬, 戚嘉妮, 鲁珊珊, 鲁克伦, 陈丽艳, 张绍骞, 戴世勋
PDF
导出引用
  • 采用基于传统熔融淬冷技术的热化学还原法制备了系列Ag纳米颗粒复合Ho3+/Tm3+ 共掺铋锗酸盐玻璃样品,研究了Ag纳米颗粒含量对玻璃2 m发光特性的影响. 结果表明,Ag纳米颗粒的表面等离子体共振带位于500900 nm,峰值位于650 nm,透射电子显微镜图像中观察到均匀分布的Ag纳米颗粒,尺寸约为510 nm. 通过测试玻璃样品在1.72.3 um 波段的荧光光谱发现,Ag掺杂后Ho3+ 离子2 m处的荧光强度得到了极大的提高,其中AgCl掺杂质量分数为0.3%时的荧光强度比未掺杂时的荧光强度增强10倍,这归因于Ag纳米颗粒的局域场增强作用. 计算得到Ho3+离子的吸收截面为0.49110-20 cm-2,发射截面为1.0310-20 cm-2,当增益系数为0.2时即可实现正的增益.
    • 基金项目: 国家自然科学基金(批准号:61205181,61308092)、浙江省自然科学基金(批准号:LQ12E02003)、宁波市自然科学基金(批准号:2012A610122)、浙江省教育厅科研计划(批准号:Y201120457)、教育部留学回国人员科研启动基金和宁波大学王宽诚幸福基金资助的课题.
    [1]

    Zhu J, Dai S X, Peng B, Shen X, Wang X S, Xu T F, Nie Q H 2010 Acta Phys. Sin. 59 5803 (in Chinese) [朱军, 戴世勋, 彭波, 沈祥, 王训四, 徐铁峰, 聂秋华 2010 物理学报 59 5803]

    [2]

    Dai S X, Peng B, Le F D, Wang X S, Shen X, Xu T F, Nie Q H 2010 Acta Phys. Sin. 59 3547 (in Chinese) [戴世勋, 彭波, 乐放达, 王训四, 沈祥, 徐铁峰, 聂秋华 2010 物理学报 59 3547]

    [3]

    Richards B, Shen S, Jha A, Tsang Y, Binks D 2007 Opt. Express 15 6546

    [4]

    Zhang X L, Wang Y Z, Shi H F 2006 Acta Phys. Sin. 55 1787 (in Chinese) [张新陆, 王月珠, 史洪峰 2006 物理学报 55 1787]

    [5]

    Yi L, Wang M, Feng S, Chen Y, Wang G, Hu L, Zhang J 2009 Opt. Mater. 31 1586

    [6]

    Huang D D, Yang Q H, Wang Y G, Zhang H J, Lu S Z, Zou Y W, Wei Z Y 2013 Chin. Phys. B 22 037801

    [7]

    Wang J G, Zhang Z G, Xu J Z, Xu J R, Fu P M, Chen X B 2000 Chin. Phys. 9 210

    [8]

    Wei S, Xu Y, Dai S, Zhou Y, Lin C, Zhang P 2013 Physica B 416 64 68

    [9]

    Zhang W J, Zhang Q Y, Chen Q J, Qian Q, Yang Z M, Qiu J R, Huang P, Wang Y S 2009 Opt. Express 17 20952

    [10]

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801 (in Chinese)[佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801]

    [11]

    Wu Y, Shen X, Dai S, Xu Y, Chen F, Lin C, Xu T, Nie Q 2011 J. Phys. Chem. C 115 25040

    [12]

    Qi J, Xu T, Wu Y, Shen X, Dai S, Xu Y 2013 Opt. Mater. 35 2502

    [13]

    Guo H, Wang X, Chen J, Li F 2010 Opt. Express 18 18900

    [14]

    Yu W, Wang X Z, Dai W L, Lu W B, Liu Y M, Fu G S 2013 Chin. Phys. B 22 057804

    [15]

    Eichelbaum M, Rademann K 2009 Adv. Funct. Mater. 19 2045

    [16]

    Chen F, Dai S, Xu T, Shen X, Lin C, Nie Q, Liu C, Heo J 2011 Chem. Phys. Lett. 514 79

    [17]

    Tikhomirov V K, Méndez-Ramos J, Rodríguez V D, Furniss D, Seddon A B 2007 J. Alloys Compd. 436 216

  • [1]

    Zhu J, Dai S X, Peng B, Shen X, Wang X S, Xu T F, Nie Q H 2010 Acta Phys. Sin. 59 5803 (in Chinese) [朱军, 戴世勋, 彭波, 沈祥, 王训四, 徐铁峰, 聂秋华 2010 物理学报 59 5803]

    [2]

    Dai S X, Peng B, Le F D, Wang X S, Shen X, Xu T F, Nie Q H 2010 Acta Phys. Sin. 59 3547 (in Chinese) [戴世勋, 彭波, 乐放达, 王训四, 沈祥, 徐铁峰, 聂秋华 2010 物理学报 59 3547]

    [3]

    Richards B, Shen S, Jha A, Tsang Y, Binks D 2007 Opt. Express 15 6546

    [4]

    Zhang X L, Wang Y Z, Shi H F 2006 Acta Phys. Sin. 55 1787 (in Chinese) [张新陆, 王月珠, 史洪峰 2006 物理学报 55 1787]

    [5]

    Yi L, Wang M, Feng S, Chen Y, Wang G, Hu L, Zhang J 2009 Opt. Mater. 31 1586

    [6]

    Huang D D, Yang Q H, Wang Y G, Zhang H J, Lu S Z, Zou Y W, Wei Z Y 2013 Chin. Phys. B 22 037801

    [7]

    Wang J G, Zhang Z G, Xu J Z, Xu J R, Fu P M, Chen X B 2000 Chin. Phys. 9 210

    [8]

    Wei S, Xu Y, Dai S, Zhou Y, Lin C, Zhang P 2013 Physica B 416 64 68

    [9]

    Zhang W J, Zhang Q Y, Chen Q J, Qian Q, Yang Z M, Qiu J R, Huang P, Wang Y S 2009 Opt. Express 17 20952

    [10]

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801 (in Chinese)[佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801]

    [11]

    Wu Y, Shen X, Dai S, Xu Y, Chen F, Lin C, Xu T, Nie Q 2011 J. Phys. Chem. C 115 25040

    [12]

    Qi J, Xu T, Wu Y, Shen X, Dai S, Xu Y 2013 Opt. Mater. 35 2502

    [13]

    Guo H, Wang X, Chen J, Li F 2010 Opt. Express 18 18900

    [14]

    Yu W, Wang X Z, Dai W L, Lu W B, Liu Y M, Fu G S 2013 Chin. Phys. B 22 057804

    [15]

    Eichelbaum M, Rademann K 2009 Adv. Funct. Mater. 19 2045

    [16]

    Chen F, Dai S, Xu T, Shen X, Lin C, Nie Q, Liu C, Heo J 2011 Chem. Phys. Lett. 514 79

    [17]

    Tikhomirov V K, Méndez-Ramos J, Rodríguez V D, Furniss D, Seddon A B 2007 J. Alloys Compd. 436 216

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1902
  • PDF下载量:  504
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-19
  • 修回日期:  2014-01-24
  • 刊出日期:  2014-05-05

Ag纳米颗粒增强的Ho3+/Tm3+共掺铋锗酸盐玻璃的2m发光研究

  • 1. 宁波大学高等技术研究院, 宁波 315211;
  • 2. 宁波大学材料科学与化学工程学院, 宁波 315211;
  • 3. 宁波大学科学技术学院, 宁波 315211;
  • 4. 中国科学院大连化学物理研究所, 大连 116023
    基金项目: 

    国家自然科学基金(批准号:61205181,61308092)、浙江省自然科学基金(批准号:LQ12E02003)、宁波市自然科学基金(批准号:2012A610122)、浙江省教育厅科研计划(批准号:Y201120457)、教育部留学回国人员科研启动基金和宁波大学王宽诚幸福基金资助的课题.

摘要: 采用基于传统熔融淬冷技术的热化学还原法制备了系列Ag纳米颗粒复合Ho3+/Tm3+ 共掺铋锗酸盐玻璃样品,研究了Ag纳米颗粒含量对玻璃2 m发光特性的影响. 结果表明,Ag纳米颗粒的表面等离子体共振带位于500900 nm,峰值位于650 nm,透射电子显微镜图像中观察到均匀分布的Ag纳米颗粒,尺寸约为510 nm. 通过测试玻璃样品在1.72.3 um 波段的荧光光谱发现,Ag掺杂后Ho3+ 离子2 m处的荧光强度得到了极大的提高,其中AgCl掺杂质量分数为0.3%时的荧光强度比未掺杂时的荧光强度增强10倍,这归因于Ag纳米颗粒的局域场增强作用. 计算得到Ho3+离子的吸收截面为0.49110-20 cm-2,发射截面为1.0310-20 cm-2,当增益系数为0.2时即可实现正的增益.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回