-
五边形截面的单晶Ag纳米线对ZnO量子点荧光具有增强的现象. 为解释这一现象, 利用时域有限差分法对五边形截面的Ag纳米线的局域表面等离子体共振模式进行了理论模拟. 结果表明, 五边形截面的Ag纳米线在紫外区域存在两个消光峰, 分别由Ag纳米线的横向偶极共振(340 nm)和四极共振(375 nm)引起; 这两个消光峰与ZnO量子点荧光增强峰相一致, 而且随着Ag纳米线的半径增大而红移; 消光峰对应的共振模式取决于Ag纳米线的截面形状; 根据Ag纳米线电场增强倍数与激发光波长变化关系曲线可知, 最大增强电场位于五边形截面的顶点处, 而边线处电场增强较小. 理论模拟的结果较好地解释了Ag纳米线/ZnO量子点体系的荧光增强现象, 也为Ag纳米线在提高半导体材料发光效率、生物探测等方面的应用提供有益的参考.
[1] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp65-66
[2] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Duyne R P V 2008 Nature Mater. 7 442
[3] Klar T, Perner M, Grosse S, Plessen G V, Spirkl W, Feldmann J 1998 Phys. Rev. Lett. 80 4249
[4] Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A 2004 Nature Mater. 3 601
[5] Cheng P H, Li D S, Yuan Z Z, Chen P L, Yang D R 2008 Appl. Phys. Lett. 92 041119
[6] Liu K W, Tang Y D, Cong C X, Sum T C, Huan A C H, Shen Z X, Wang L, Jiang F Y, Sun X W, Sun H D 2009 Appl. Phys. Lett. 94 151102
[7] Qiao Q, Shan C X, Zheng J, Li B H, Zhang Z Z, Zhang L G, Shen D Z 2012 J. Mater. Chem. 22 9481
[8] Xu T N, Hu L, Jin S Q, Zhang B P, Cai X K, Wu H Z, Sui C H 2012 Appl. Sur. Sci. 258 5886
[9] Sun Y G, Xia Y N 2002 Adv. Mater. 14 833
[10] Pan D, Wei H, Xu H X 2013 Chin. Phys. B 22 097305
[11] Singh D, Dasgupta A, Aswathy V G, Tripathi P N, Kumar G V P 2015 Opt. Lett. 40 1006
[12] Xiong X, Zou C L, Ren X F, Liu A P, Ye Y X, Sun F W, Guo G C 2013 Laser Photon. Rev. 7 901
[13] Zong R L, Zhou J, Li Q, Du B, Li B, Fu M, Qi X W, Li L T, Buddhudu S 2004 J. Phys. Chem. B 108 16713
[14] Xu T N, Li J, Li X, Sui C H, Wu H Z 2014 Chin. J. Lumin. 35 404 (in Chinese) [徐天宁, 李佳, 李翔, 隋成华, 吴惠桢 2014 发光学报 35 404]
[15] Sun Y G, Mayers B, Herricks T, Xia Y N 2003 Nano Lett. 3 955
[16] Wiley B, Sun Y G, Mayers B, Xia Y N 2005 Chem. Eur. J. 11 454
[17] Kelly L K, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668
-
[1] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp65-66
[2] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Duyne R P V 2008 Nature Mater. 7 442
[3] Klar T, Perner M, Grosse S, Plessen G V, Spirkl W, Feldmann J 1998 Phys. Rev. Lett. 80 4249
[4] Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A 2004 Nature Mater. 3 601
[5] Cheng P H, Li D S, Yuan Z Z, Chen P L, Yang D R 2008 Appl. Phys. Lett. 92 041119
[6] Liu K W, Tang Y D, Cong C X, Sum T C, Huan A C H, Shen Z X, Wang L, Jiang F Y, Sun X W, Sun H D 2009 Appl. Phys. Lett. 94 151102
[7] Qiao Q, Shan C X, Zheng J, Li B H, Zhang Z Z, Zhang L G, Shen D Z 2012 J. Mater. Chem. 22 9481
[8] Xu T N, Hu L, Jin S Q, Zhang B P, Cai X K, Wu H Z, Sui C H 2012 Appl. Sur. Sci. 258 5886
[9] Sun Y G, Xia Y N 2002 Adv. Mater. 14 833
[10] Pan D, Wei H, Xu H X 2013 Chin. Phys. B 22 097305
[11] Singh D, Dasgupta A, Aswathy V G, Tripathi P N, Kumar G V P 2015 Opt. Lett. 40 1006
[12] Xiong X, Zou C L, Ren X F, Liu A P, Ye Y X, Sun F W, Guo G C 2013 Laser Photon. Rev. 7 901
[13] Zong R L, Zhou J, Li Q, Du B, Li B, Fu M, Qi X W, Li L T, Buddhudu S 2004 J. Phys. Chem. B 108 16713
[14] Xu T N, Li J, Li X, Sui C H, Wu H Z 2014 Chin. J. Lumin. 35 404 (in Chinese) [徐天宁, 李佳, 李翔, 隋成华, 吴惠桢 2014 发光学报 35 404]
[15] Sun Y G, Mayers B, Herricks T, Xia Y N 2003 Nano Lett. 3 955
[16] Wiley B, Sun Y G, Mayers B, Xia Y N 2005 Chem. Eur. J. 11 454
[17] Kelly L K, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668
引用本文: |
Citation: |
计量
- 文章访问数: 1840
- PDF下载量: 624
- 被引次数: 0