搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiOx(x=1.3)薄膜的优化阻变特性与退火温度的关系探究

任圣 马忠元 江小帆 王越飞 夏国银 陈坤基 黄信凡 徐骏 徐岭 李伟 冯端

SiOx(x=1.3)薄膜的优化阻变特性与退火温度的关系探究

任圣, 马忠元, 江小帆, 王越飞, 夏国银, 陈坤基, 黄信凡, 徐骏, 徐岭, 李伟, 冯端
PDF
导出引用
  • 采用电子束蒸发技术在Si衬底上制备了亚氧化硅SiOx (x=1.3)薄膜,研究了不同温度热退火处理的SiOx薄膜作为阻变层的ITO/SiOx/Si/Al结构的阻变特性. 研究发现,在电极尺寸相同的条件下,随着退火温度的增加,该结构的高低阻态比显著提高,最高可达109. X射线光电子能谱和电子顺磁共振能谱的分析表明,不同退火温度下形成的不同价态的硅悬挂键是低阻态下细丝通道的主要来源. 椭偏仪的测试结果表明,经过热退火处理的SiOx薄膜折射率的增大是导致高阻态下器件电阻增大的原因.
    • 基金项目: 国家重点基础研究发展计划(批准号:2010CB934402,2013CB632101)、国家自然科学基金(批准号:61071008,60976001)、中央高等学校基本科研基金(批准号:1095021030,1116021004,1114021005)和高等学校博士学科点专项科研基金(批准号:20130091110024)资助的课题.
    [1]

    Liu C Y, Shih Y R, Huang S J 2013 Solid State Commun. 159 13

    [2]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [3]

    Sawa A 2008 Mater. Today 11 28

    [4]

    Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283

    [5]

    Huang D, Wu J J, Tang Y H 2013 Chin. Phys. B 22 038401

    [6]

    Bardeen J, Brattain W H 1948 Phys. Rev. 74 230

    [7]

    Waser R, Aono M 2007 Nat. Mater. 6 833

    [8]

    Lee H Y, Chen P S, Wu T Y, Chen Y S, Wang C C, Tzeng P J, Lin C H, Chen F, Lien C H, Tsai M J 2008 International Electron Devices Meeting San Francisco, USA, December 15-17, 2008 p1

    [9]

    Zhao J W, Liu F J, Huang H Q, Hu Z F, Zhang X Q 2012 Chin. Phys. B 21 065201

    [10]

    Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304

    [11]

    Beck A, Bednorz J G, Gerber C, Rossel C, Widmer D 2000 Appl. Phys. Lett. 77 139

    [12]

    Terabe K, Hasegawa T, Nakayama T, Aono M 2005 Nature 433 47

    [13]

    Soni R, Meuffels P, Kohlstedt H, Kugeler C, Waser R 2009 Appl. Phys. Lett. 94 123503

    [14]

    Yao J, Sun Z Z, Zhong L, Douglas N, James M T 2010 Nano Lett. 10 4105

    [15]

    Wang Y F, Qian X Y, Chen K J, Fang Z H, Li W, Xu J 2013 Appl. Phys. Lett. 102 042103

    [16]

    Wang Y Z, Chen Y T, Xue F, Zhou F, Chang Y F, Fowler B, Lee J C 2012 Appl. Phys. Lett. 100 083502

    [17]

    Chen R, Zhou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 物理学报 63 067202]

    [18]

    Huang R, Zhang L J, Gao D J, Pan Y, Qin S Q, Tang P, Cai Y M, Wang Y Y 2011 Appl. Phys. A 102 927

    [19]

    Schindler C, Weides M, Kozicki M N, Waser R 2008 Appl. Phys. Lett. 92 122910

    [20]

    Kim H D, An H M, Kim K C, Seo Y, Nam K H, Chung H B, Lee E B, Kim T G 2010 Semicond. Sci. Technol. 25 065002

    [21]

    Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870

    [22]

    Shamekh A M A, Tokuda N, Inokuma T 2011 J. Non-Cryst. Solids 357 981

    [23]

    Holzenkampfer E, Richter F W, Stuke J, Grote U V 1979 J. Non-Cryst. Solids 32 327

    [24]

    Hamann D R 2000 Phys. Rev. B 61 9899

    [25]

    Arndt J, Devine R A B, Revesz A G 1991 J. Non-Cryst. Solids 131 1206

  • [1]

    Liu C Y, Shih Y R, Huang S J 2013 Solid State Commun. 159 13

    [2]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [3]

    Sawa A 2008 Mater. Today 11 28

    [4]

    Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283

    [5]

    Huang D, Wu J J, Tang Y H 2013 Chin. Phys. B 22 038401

    [6]

    Bardeen J, Brattain W H 1948 Phys. Rev. 74 230

    [7]

    Waser R, Aono M 2007 Nat. Mater. 6 833

    [8]

    Lee H Y, Chen P S, Wu T Y, Chen Y S, Wang C C, Tzeng P J, Lin C H, Chen F, Lien C H, Tsai M J 2008 International Electron Devices Meeting San Francisco, USA, December 15-17, 2008 p1

    [9]

    Zhao J W, Liu F J, Huang H Q, Hu Z F, Zhang X Q 2012 Chin. Phys. B 21 065201

    [10]

    Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304

    [11]

    Beck A, Bednorz J G, Gerber C, Rossel C, Widmer D 2000 Appl. Phys. Lett. 77 139

    [12]

    Terabe K, Hasegawa T, Nakayama T, Aono M 2005 Nature 433 47

    [13]

    Soni R, Meuffels P, Kohlstedt H, Kugeler C, Waser R 2009 Appl. Phys. Lett. 94 123503

    [14]

    Yao J, Sun Z Z, Zhong L, Douglas N, James M T 2010 Nano Lett. 10 4105

    [15]

    Wang Y F, Qian X Y, Chen K J, Fang Z H, Li W, Xu J 2013 Appl. Phys. Lett. 102 042103

    [16]

    Wang Y Z, Chen Y T, Xue F, Zhou F, Chang Y F, Fowler B, Lee J C 2012 Appl. Phys. Lett. 100 083502

    [17]

    Chen R, Zhou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 物理学报 63 067202]

    [18]

    Huang R, Zhang L J, Gao D J, Pan Y, Qin S Q, Tang P, Cai Y M, Wang Y Y 2011 Appl. Phys. A 102 927

    [19]

    Schindler C, Weides M, Kozicki M N, Waser R 2008 Appl. Phys. Lett. 92 122910

    [20]

    Kim H D, An H M, Kim K C, Seo Y, Nam K H, Chung H B, Lee E B, Kim T G 2010 Semicond. Sci. Technol. 25 065002

    [21]

    Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870

    [22]

    Shamekh A M A, Tokuda N, Inokuma T 2011 J. Non-Cryst. Solids 357 981

    [23]

    Holzenkampfer E, Richter F W, Stuke J, Grote U V 1979 J. Non-Cryst. Solids 32 327

    [24]

    Hamann D R 2000 Phys. Rev. B 61 9899

    [25]

    Arndt J, Devine R A B, Revesz A G 1991 J. Non-Cryst. Solids 131 1206

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1551
  • PDF下载量:  410
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-16
  • 修回日期:  2014-05-30
  • 刊出日期:  2014-08-05

SiOx(x=1.3)薄膜的优化阻变特性与退火温度的关系探究

  • 1. 南京大学电子科学与工程学院, 固体微结构物理国家重点实验室, 南京 210093
    基金项目: 

    国家重点基础研究发展计划(批准号:2010CB934402,2013CB632101)、国家自然科学基金(批准号:61071008,60976001)、中央高等学校基本科研基金(批准号:1095021030,1116021004,1114021005)和高等学校博士学科点专项科研基金(批准号:20130091110024)资助的课题.

摘要: 采用电子束蒸发技术在Si衬底上制备了亚氧化硅SiOx (x=1.3)薄膜,研究了不同温度热退火处理的SiOx薄膜作为阻变层的ITO/SiOx/Si/Al结构的阻变特性. 研究发现,在电极尺寸相同的条件下,随着退火温度的增加,该结构的高低阻态比显著提高,最高可达109. X射线光电子能谱和电子顺磁共振能谱的分析表明,不同退火温度下形成的不同价态的硅悬挂键是低阻态下细丝通道的主要来源. 椭偏仪的测试结果表明,经过热退火处理的SiOx薄膜折射率的增大是导致高阻态下器件电阻增大的原因.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回