搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝纳米晶的正电子湮没研究

李裕 罗江山 王柱 杨蒙生 邢丕峰 易勇 雷海乐

铝纳米晶的正电子湮没研究

李裕, 罗江山, 王柱, 杨蒙生, 邢丕峰, 易勇, 雷海乐
PDF
导出引用
  • 采用自悬浮定向流-真空热压法, 在不同压强下制得铝纳米晶材料, 并利用X射线衍射(XRD)和正电子湮没寿命谱(PALS)分析手段对铝纳米晶的结构和微观缺陷进行表征. XRD分析表明: 所制备的铝纳米晶的晶粒度为48 nm. PALS分析表明: 铝纳米晶的微观缺陷主要为类空位以及空位团, 而微孔洞很少; 短寿命τ1, 中间寿命τ2以及其对应的强度I1, I2随压强变化而呈现阶段性变化; 压制压强(P)低于0.39 GPa时制得的纳米晶空位团随压强的增加而逐渐转变为类空位; 0.39 GPa ≤ P≤ 0.72 GPa 时, 各类缺陷发生消除; P≥ 0.72 GPa时, 各类缺陷进一步发生消除. 随压强的提高, 铝纳米晶的密度增加, 其显微硬度也明显增高.
    [1]

    Gleiter H 1989 Prog. Mater. Sci. 33 223

    [2]

    Schaefer H E, Wrschum R 1987 Phys. Lett. A 119 370

    [3]

    Qin X Y, Zhu J S, Zhou X Y, Wu X J 1994 Phys. Lett. A 193 335

    [4]

    Zeng X C 2012 M. S. Thesis ( Wuhan: Huazhong University of Science and Technology) (in Chinese) [曾小川 2012 硕士学位论文 (武汉: 华中科技大学)]

    [5]

    Schaefer H E, Wrschum R, Birringer R, Gleiter H 1988 Phys. Rev. B 38 9545

    [6]

    Qin X Y, Zhu J S, Zhang L D, Zhou X Y 1998 J. Phys. Cond. Matter 10 3075

    [7]

    Chu G, Luo J S, Liu W, Tang Y J, Lei H L, Yang S Y 2006 High Power Laser and Particle Beams 18 160 (in Chinese) [楚广, 罗江山, 刘伟, 唐永建, 雷海乐, 杨世源 2006 强激光与粒子束 18 160]

    [8]

    Zhang T, Qiu C, Zhang H J, Dai Y Q, Chen Z Q, Zhang H L, Lei H L 2010 J. Wuhan Univ. (Natural Science Edition) 6 3 (in Chinese) [章婷, 邱诚, 张宏俊, 戴益群, 陈志权, 张洪亮, 雷海乐 2010 武汉大学学报 (理学版) 6 3]

    [9]

    Zhou K, Li H, Pang J B, Wang Z 2012 Physica B 407 1219

    [10]

    Wrschum R, Scheytt M, Schaefer H E 1987 Phys. Stat. Solid. A 102 119

    [11]

    Qi N, Wang Y W, Wang D, Wang D D, Chen Z Q 2011 Acta Phys. Sin. 60 107805 (in Chinese) [祁宁, 王元为, 王栋, 王丹丹, 陈志权 2011 物理学报 60 107805]

    [12]

    Zhou K, Li H, Wang Z 2013 Chin. Phys. Lett. 30 057804

    [13]

    Chen Z Y, Chen Z Q, Pan R K, Wang S J 2013 Chin. Phys. Lett. 30 027804

    [14]

    Fluss M J, Smedskjaer L C, Chason M K, Legnini D G, Siegel R W 1978 Phys. Rev. B 17 3444

    [15]

    Soininen E, Huomo H, Huttunen P A, Mäkinen J, Vehanen A, Hautojärvi P 1990 Phys. Rev. B 41 6227

    [16]

    Puska M J, Nieminen R M 1983 J. Phys. F 13 333

    [17]

    Li D X, Ping D H, Ye H Q, Qin X Y, Wu X J 1993 Mater. Lett. 18 29

    [18]

    Čížek J, Procházka I, Cieslar M, Kužel R, Kuriplach J, Chmelík F, Islamgaliev R K 2002 Phys. Rev. B 65 094106

    [19]

    Mascher P, Dannefaer S, Kerr D 1989 Phys. Rev. B 40 11764

    [20]

    Dupasquier A, Mills Jr A P 1995 Positron Spectroscopy of Solids (Amsterdam: IOS Press) pp505-522

    [21]

    Niemine R M, Laakkonen J 1979 Appl. Phys. 20 181

  • [1]

    Gleiter H 1989 Prog. Mater. Sci. 33 223

    [2]

    Schaefer H E, Wrschum R 1987 Phys. Lett. A 119 370

    [3]

    Qin X Y, Zhu J S, Zhou X Y, Wu X J 1994 Phys. Lett. A 193 335

    [4]

    Zeng X C 2012 M. S. Thesis ( Wuhan: Huazhong University of Science and Technology) (in Chinese) [曾小川 2012 硕士学位论文 (武汉: 华中科技大学)]

    [5]

    Schaefer H E, Wrschum R, Birringer R, Gleiter H 1988 Phys. Rev. B 38 9545

    [6]

    Qin X Y, Zhu J S, Zhang L D, Zhou X Y 1998 J. Phys. Cond. Matter 10 3075

    [7]

    Chu G, Luo J S, Liu W, Tang Y J, Lei H L, Yang S Y 2006 High Power Laser and Particle Beams 18 160 (in Chinese) [楚广, 罗江山, 刘伟, 唐永建, 雷海乐, 杨世源 2006 强激光与粒子束 18 160]

    [8]

    Zhang T, Qiu C, Zhang H J, Dai Y Q, Chen Z Q, Zhang H L, Lei H L 2010 J. Wuhan Univ. (Natural Science Edition) 6 3 (in Chinese) [章婷, 邱诚, 张宏俊, 戴益群, 陈志权, 张洪亮, 雷海乐 2010 武汉大学学报 (理学版) 6 3]

    [9]

    Zhou K, Li H, Pang J B, Wang Z 2012 Physica B 407 1219

    [10]

    Wrschum R, Scheytt M, Schaefer H E 1987 Phys. Stat. Solid. A 102 119

    [11]

    Qi N, Wang Y W, Wang D, Wang D D, Chen Z Q 2011 Acta Phys. Sin. 60 107805 (in Chinese) [祁宁, 王元为, 王栋, 王丹丹, 陈志权 2011 物理学报 60 107805]

    [12]

    Zhou K, Li H, Wang Z 2013 Chin. Phys. Lett. 30 057804

    [13]

    Chen Z Y, Chen Z Q, Pan R K, Wang S J 2013 Chin. Phys. Lett. 30 027804

    [14]

    Fluss M J, Smedskjaer L C, Chason M K, Legnini D G, Siegel R W 1978 Phys. Rev. B 17 3444

    [15]

    Soininen E, Huomo H, Huttunen P A, Mäkinen J, Vehanen A, Hautojärvi P 1990 Phys. Rev. B 41 6227

    [16]

    Puska M J, Nieminen R M 1983 J. Phys. F 13 333

    [17]

    Li D X, Ping D H, Ye H Q, Qin X Y, Wu X J 1993 Mater. Lett. 18 29

    [18]

    Čížek J, Procházka I, Cieslar M, Kužel R, Kuriplach J, Chmelík F, Islamgaliev R K 2002 Phys. Rev. B 65 094106

    [19]

    Mascher P, Dannefaer S, Kerr D 1989 Phys. Rev. B 40 11764

    [20]

    Dupasquier A, Mills Jr A P 1995 Positron Spectroscopy of Solids (Amsterdam: IOS Press) pp505-522

    [21]

    Niemine R M, Laakkonen J 1979 Appl. Phys. 20 181

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1767
  • PDF下载量:  338
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-26
  • 修回日期:  2014-08-16
  • 刊出日期:  2014-12-05

铝纳米晶的正电子湮没研究

  • 1. 中国工程物理研究院激光聚变研究中心, 绵阳 621900;
  • 2. 西南科技大学材料科学与工程学院, 绵阳 621010;
  • 3. 武汉大学物理科学与技术学院, 武汉 430070

摘要: 采用自悬浮定向流-真空热压法, 在不同压强下制得铝纳米晶材料, 并利用X射线衍射(XRD)和正电子湮没寿命谱(PALS)分析手段对铝纳米晶的结构和微观缺陷进行表征. XRD分析表明: 所制备的铝纳米晶的晶粒度为48 nm. PALS分析表明: 铝纳米晶的微观缺陷主要为类空位以及空位团, 而微孔洞很少; 短寿命τ1, 中间寿命τ2以及其对应的强度I1, I2随压强变化而呈现阶段性变化; 压制压强(P)低于0.39 GPa时制得的纳米晶空位团随压强的增加而逐渐转变为类空位; 0.39 GPa ≤ P≤ 0.72 GPa 时, 各类缺陷发生消除; P≥ 0.72 GPa时, 各类缺陷进一步发生消除. 随压强的提高, 铝纳米晶的密度增加, 其显微硬度也明显增高.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回