搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气风场和温度对无线电声波探测系统探测高度影响的数值研究

王盼盼 周晨 宋杨 张援农 赵正予

大气风场和温度对无线电声波探测系统探测高度影响的数值研究

王盼盼, 周晨, 宋杨, 张援农, 赵正予
PDF
导出引用
  • 从声波扰动介质中的电波波动方程出发, 使用时域有限差分(FDTD)方法, 结合声波传播的FDTD 模型, 构建了描述声波和电波相互作用的数值模型, 并运用该模型分析风场和温度对无线电声波探测系统的探测高度的影响. 数值模拟结果表明: 温度与风场剖面的存在改变声波和电波散射回波的传播轨迹; 温度梯度剖面主要影响声波的传播速度, 风场剖面导致作为电波散射体的声波波阵面的偏移, 降低电波散射回波的强度并改变回波路径, 使得接收数据减少, 限制无线电声波探测系统的探测高度; 在强风背景下, 若降低声波散射体高度, 电波散射回波“聚束点”的偏移会有较大的改善, 但同时意味着探测高度的降低. 为了改善风场背景下无线电声波探测系统的探测高度, 可以使用双基地雷达或者增大接收天线面积等方法来实现.
    [1]

    Xiong H 2000 Radio Wave Propagation (Beijing: Electronic Industry Press) (in Chinese) [熊皓 2000 无线电波传播(北京: 电子工业出版社)]

    [2]

    Smith Jr P L 1961 5th National Convention on Military Electronics Midwest Research Institute, Washington, DC, System Analysis, June 26-28, 1999

    [3]

    Marshall J M, Peterson A M, Branes Jr A A 1972 Appl. Opt. 11 108

    [4]

    Frankel M S, Chang N J F, Sanders Jr M J 1977 Bull. Am. Meteorol. Soc. 58 928

    [5]

    Fukushima M S, Akita K, Masuda Y 1979 Enuiron. Res. Jpn. 104 1

    [6]

    Azizyan G V, Bovsheverrov V M, Gorelik A G, Yegorov M A, Krayukin G A, Knyazen L V 1981 Izv. Acad. Sci. USSR Atmos. Oceanic Phys., Engl. Transi. 17 112

    [7]

    Masuda Y 1988 Radio Sci. 23 647

    [8]

    Yee K S 1966 IEEE Trans. Antennas Propagat. 14 302

    [9]

    Taylor C D, Lam D H, Shumpert T H 1969 IEEE Trans. Antennas Propagat. 17 585

    [10]

    Merewether D E 1971 IEEE Trans. Electromagn. Compat. 13 41

    [11]

    Luebbers R J, Kuriz K S, Schneider M, Hmsberger 1991 IEEE Trans. Antennas Propagat. 39 429

    [12]

    Zhu X M, Ren X C, Guo L X 2014 Acta Phys. Sin. 63 054101 (in Chinese) [朱小敏, 任新成, 郭立新 2014 物理学报 63 054101]

    [13]

    Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. Soc. 18 1674

    [14]

    Liu S B, Liu S Q 2004 Chin. Phys. Soc. 13 1009

    [15]

    Song Y, Zhao Z Y, Zhang Y N 2014 Acta Geophys. Sin. 57 1746 (in Chinese) [宋杨, 赵正予, 张援农 2014 地球物理学报 57 1746]

    [16]

    Song Y 2014 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese) [宋杨 2014 博士学位论文(武汉: 武汉大学)]

    [17]

    Beer T 1974 Atmospheric Waves (London: Adam Hilger)

    [18]

    Smith E K, Weintraub S 1953 PROC. IRE 41 1035

    [19]

    David H, Robert R, Jerl W 2005 Fundamental of Physics (USA: John Wiley and Sons) p509

    [20]

    Mur G 1981 IEEE Trans. Electromagn. Compat. 23 377

    [21]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [22]

    Courant R, Friedrichs K, Lewy H 1928 Math. Ann. 100 32

    [23]

    Du G H, Zhu Z M, Gong X F 2012 Acoustic Foundation (3rd Ed.) (Nanjing: Nanjing University Press) (in Chinese) [杜功焕, 朱哲民, 龚秀芬2012 声学基础(第三版)(南京: 南京大学出版社)]

    [24]

    Ma W W 2006 Physics (5th Ed.) (Beijing: Higher Education Press) (in Chinese) [马文蔚 2006 物理学(第五版)(北京: 高等教育出版社)]

  • [1]

    Xiong H 2000 Radio Wave Propagation (Beijing: Electronic Industry Press) (in Chinese) [熊皓 2000 无线电波传播(北京: 电子工业出版社)]

    [2]

    Smith Jr P L 1961 5th National Convention on Military Electronics Midwest Research Institute, Washington, DC, System Analysis, June 26-28, 1999

    [3]

    Marshall J M, Peterson A M, Branes Jr A A 1972 Appl. Opt. 11 108

    [4]

    Frankel M S, Chang N J F, Sanders Jr M J 1977 Bull. Am. Meteorol. Soc. 58 928

    [5]

    Fukushima M S, Akita K, Masuda Y 1979 Enuiron. Res. Jpn. 104 1

    [6]

    Azizyan G V, Bovsheverrov V M, Gorelik A G, Yegorov M A, Krayukin G A, Knyazen L V 1981 Izv. Acad. Sci. USSR Atmos. Oceanic Phys., Engl. Transi. 17 112

    [7]

    Masuda Y 1988 Radio Sci. 23 647

    [8]

    Yee K S 1966 IEEE Trans. Antennas Propagat. 14 302

    [9]

    Taylor C D, Lam D H, Shumpert T H 1969 IEEE Trans. Antennas Propagat. 17 585

    [10]

    Merewether D E 1971 IEEE Trans. Electromagn. Compat. 13 41

    [11]

    Luebbers R J, Kuriz K S, Schneider M, Hmsberger 1991 IEEE Trans. Antennas Propagat. 39 429

    [12]

    Zhu X M, Ren X C, Guo L X 2014 Acta Phys. Sin. 63 054101 (in Chinese) [朱小敏, 任新成, 郭立新 2014 物理学报 63 054101]

    [13]

    Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. Soc. 18 1674

    [14]

    Liu S B, Liu S Q 2004 Chin. Phys. Soc. 13 1009

    [15]

    Song Y, Zhao Z Y, Zhang Y N 2014 Acta Geophys. Sin. 57 1746 (in Chinese) [宋杨, 赵正予, 张援农 2014 地球物理学报 57 1746]

    [16]

    Song Y 2014 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese) [宋杨 2014 博士学位论文(武汉: 武汉大学)]

    [17]

    Beer T 1974 Atmospheric Waves (London: Adam Hilger)

    [18]

    Smith E K, Weintraub S 1953 PROC. IRE 41 1035

    [19]

    David H, Robert R, Jerl W 2005 Fundamental of Physics (USA: John Wiley and Sons) p509

    [20]

    Mur G 1981 IEEE Trans. Electromagn. Compat. 23 377

    [21]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [22]

    Courant R, Friedrichs K, Lewy H 1928 Math. Ann. 100 32

    [23]

    Du G H, Zhu Z M, Gong X F 2012 Acoustic Foundation (3rd Ed.) (Nanjing: Nanjing University Press) (in Chinese) [杜功焕, 朱哲民, 龚秀芬2012 声学基础(第三版)(南京: 南京大学出版社)]

    [24]

    Ma W W 2006 Physics (5th Ed.) (Beijing: Higher Education Press) (in Chinese) [马文蔚 2006 物理学(第五版)(北京: 高等教育出版社)]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1895
  • PDF下载量:  1140
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-17
  • 修回日期:  2014-12-12
  • 刊出日期:  2015-05-05

大气风场和温度对无线电声波探测系统探测高度影响的数值研究

  • 1. 武汉大学电子信息学院, 武汉 430072

摘要: 从声波扰动介质中的电波波动方程出发, 使用时域有限差分(FDTD)方法, 结合声波传播的FDTD 模型, 构建了描述声波和电波相互作用的数值模型, 并运用该模型分析风场和温度对无线电声波探测系统的探测高度的影响. 数值模拟结果表明: 温度与风场剖面的存在改变声波和电波散射回波的传播轨迹; 温度梯度剖面主要影响声波的传播速度, 风场剖面导致作为电波散射体的声波波阵面的偏移, 降低电波散射回波的强度并改变回波路径, 使得接收数据减少, 限制无线电声波探测系统的探测高度; 在强风背景下, 若降低声波散射体高度, 电波散射回波“聚束点”的偏移会有较大的改善, 但同时意味着探测高度的降低. 为了改善风场背景下无线电声波探测系统的探测高度, 可以使用双基地雷达或者增大接收天线面积等方法来实现.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回