搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自调整平滑区间粒子滤波平滑算法

杨伟明 赵美蓉

自调整平滑区间粒子滤波平滑算法

杨伟明, 赵美蓉
PDF
导出引用
  • 针对非线性系统的状态估计问题, 提出了一种自调整平滑区间粒子滤波平滑算法. 该算法的显著特点是根据采样粒子观测值与系统状态观测值之间的偏差动态修正滤波平滑区间的长度, 有效抑制了传统的粒子滤波平滑算法中因区间长度固定可能造成粒子权重重新赋值带来误差增大的问题. 该算法的原理是依据粒子滤波器的工作机理, 把系统状态信息和热槽组成一个抽象的整体, 将粒子滤波平滑过程类比为观测信息和热槽交互的统计力学系统. 在无新的观测信息时, 整个系统遵循热力学第二定律, 即无论从任何初始状态出发, 整个力学系统的熵是非减的; 而当出现新的观测信息时, 粒子滤波器像麦克斯韦妖从新的观测信息中抽取能量传送给热槽, 使整个抽象系统的熵减少, 根据系统熵的递变规律变化对滤波平滑区间的长度加以动态修正, 优化粒子的权重赋值, 进而提高系统状态的估计精度. 利用matlab进行了仿真分析, 验证了该算法的有效性.
      通信作者: 赵美蓉, meirongzhao@tju.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61304246)和天津市高等学校科技发展基金计划 (批准号: 20130707)资助的课题.
    [1]

    Capp O, Godsill S J, Moulines E 2007 P. IEEE 95 899

    [2]

    Liu X, Gao Q, Li X L 2014 Chin. Phys. B 23 010202

    [3]

    Gordon N J, Salmond D J, Smith A F M 1993 IEEE Proc. F 140 107

    [4]

    Zhu H, Zhang S N, Zhao H C 2014 Acta Phys. Sin. 63 058401 (in Chinese) [朱航, 张淑宁, 赵惠昌 2014 物理学报 63 058401]

    [5]

    Zhang S N, Zhao H C, Xiong G, Guo C Y 2014 Acta Phys. Sin. 63 158401 (in Chinese) [张淑宁, 赵惠昌, 熊刚, 郭长勇 2014 物理学报 63 158401]

    [6]

    Gning A, Ristic B, Mihaylova L 2012 IEEE T. Signal Proc. 60 2138

    [7]

    Kitagawa G 1996 J. Comput. Graph. Statist. 5 415

    [8]

    Doucet A, Godsill S J, Andrieu C 2000 Stat. Comput. 10 197

    [9]

    Briers M, Doucet A, Maskell S 2010 Ann. I. Stat. Math. 62 61

    [10]

    Doucet A, Freitas N D, Gordon N 2001 Sequential Monte Carlo Methods in Practice (New York: Springer-Verlag) pp177-195

    [11]

    Liang J 2009 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [梁军 2009 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [12]

    Mitter S K, Newton N J 2003 SIAM J. Control Optim. 42 1813

    [13]

    Newton N J 2006 SIAM J. Control Optim. 45 998

    [14]

    Newton N J 2007 SIAM J. Control Optim. 46 1637

    [15]

    Zhang D Z 2007 Acta Phys. Sin. 56 3152 (in Chinese) [张佃中 2007 物理学报 56 3152]

    [16]

    Tomita Y, Omatu S, Sodea T 1980 Inform. Sci. 22 201

    [17]

    Djuric P M, Kotecha J H, Zhang J Q, Huang Y F, Ghirmai T, Bugallo M F, Miguez J 2003 IEEE Signal Proc. Mag. 20 19

    [18]

    Wang F S, Lu M Y, Zhao Q J, Yuan Z J 2014 Chin. J. Comput. 37 16 (in Chinese) [王法胜, 鲁明羽, 赵清杰, 袁泽剑 2014 计算机学报 37 16]

    [19]

    Andrieu C, Doucet A, Holenstein R 2010 J. R. Stat. Soc. B 72 269

    [20]

    Du Z C, Tang B, Li K 2006 Acta Phys. Sin. 55 999 (in Chinese) [杜正聪, 唐斌, 李可 2006 物理学报 55 999]

    [21]

    Pitt M K, Shephard N 1999 J. Am. Stat. Assoc. 94 590

    [22]

    Li T C, Bolic M, Djuric P M 2015 IEEE Signal Proc. Mag. 32 70

    [23]

    Brard J, Moral P D, Doucet A 2014 Electron. J. Probab. 19 1

    [24]

    Hu X L, Schon T B, Ljung L 2011 IEEE T. Signal Proces. 59 3424

    [25]

    Simth A F M, Gelfand A E 1992 Am. Stat. 46 84

    [26]

    Kotecha J H, Djurić P A 2003 IEEE T. Signal Proc. 51 2602

    [27]

    Doucet A, Johansen A M 2009 Oxford Handbook of Nonlinear Filter (Cambridge: Cambridge University Press) pp32-34

  • [1]

    Capp O, Godsill S J, Moulines E 2007 P. IEEE 95 899

    [2]

    Liu X, Gao Q, Li X L 2014 Chin. Phys. B 23 010202

    [3]

    Gordon N J, Salmond D J, Smith A F M 1993 IEEE Proc. F 140 107

    [4]

    Zhu H, Zhang S N, Zhao H C 2014 Acta Phys. Sin. 63 058401 (in Chinese) [朱航, 张淑宁, 赵惠昌 2014 物理学报 63 058401]

    [5]

    Zhang S N, Zhao H C, Xiong G, Guo C Y 2014 Acta Phys. Sin. 63 158401 (in Chinese) [张淑宁, 赵惠昌, 熊刚, 郭长勇 2014 物理学报 63 158401]

    [6]

    Gning A, Ristic B, Mihaylova L 2012 IEEE T. Signal Proc. 60 2138

    [7]

    Kitagawa G 1996 J. Comput. Graph. Statist. 5 415

    [8]

    Doucet A, Godsill S J, Andrieu C 2000 Stat. Comput. 10 197

    [9]

    Briers M, Doucet A, Maskell S 2010 Ann. I. Stat. Math. 62 61

    [10]

    Doucet A, Freitas N D, Gordon N 2001 Sequential Monte Carlo Methods in Practice (New York: Springer-Verlag) pp177-195

    [11]

    Liang J 2009 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [梁军 2009 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [12]

    Mitter S K, Newton N J 2003 SIAM J. Control Optim. 42 1813

    [13]

    Newton N J 2006 SIAM J. Control Optim. 45 998

    [14]

    Newton N J 2007 SIAM J. Control Optim. 46 1637

    [15]

    Zhang D Z 2007 Acta Phys. Sin. 56 3152 (in Chinese) [张佃中 2007 物理学报 56 3152]

    [16]

    Tomita Y, Omatu S, Sodea T 1980 Inform. Sci. 22 201

    [17]

    Djuric P M, Kotecha J H, Zhang J Q, Huang Y F, Ghirmai T, Bugallo M F, Miguez J 2003 IEEE Signal Proc. Mag. 20 19

    [18]

    Wang F S, Lu M Y, Zhao Q J, Yuan Z J 2014 Chin. J. Comput. 37 16 (in Chinese) [王法胜, 鲁明羽, 赵清杰, 袁泽剑 2014 计算机学报 37 16]

    [19]

    Andrieu C, Doucet A, Holenstein R 2010 J. R. Stat. Soc. B 72 269

    [20]

    Du Z C, Tang B, Li K 2006 Acta Phys. Sin. 55 999 (in Chinese) [杜正聪, 唐斌, 李可 2006 物理学报 55 999]

    [21]

    Pitt M K, Shephard N 1999 J. Am. Stat. Assoc. 94 590

    [22]

    Li T C, Bolic M, Djuric P M 2015 IEEE Signal Proc. Mag. 32 70

    [23]

    Brard J, Moral P D, Doucet A 2014 Electron. J. Probab. 19 1

    [24]

    Hu X L, Schon T B, Ljung L 2011 IEEE T. Signal Proces. 59 3424

    [25]

    Simth A F M, Gelfand A E 1992 Am. Stat. 46 84

    [26]

    Kotecha J H, Djurić P A 2003 IEEE T. Signal Proc. 51 2602

    [27]

    Doucet A, Johansen A M 2009 Oxford Handbook of Nonlinear Filter (Cambridge: Cambridge University Press) pp32-34

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2076
  • PDF下载量:  233
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-10
  • 修回日期:  2015-11-24
  • 刊出日期:  2016-02-05

自调整平滑区间粒子滤波平滑算法

  • 1. 天津大学, 精密测试技术及仪器国家重点实验室, 天津 300072;
  • 2. 天津科技大学电子信息与自动化学院, 天津 300222
  • 通信作者: 赵美蓉, meirongzhao@tju.edu.cn
    基金项目: 

    国家自然科学基金青年科学基金(批准号: 61304246)和天津市高等学校科技发展基金计划 (批准号: 20130707)资助的课题.

摘要: 针对非线性系统的状态估计问题, 提出了一种自调整平滑区间粒子滤波平滑算法. 该算法的显著特点是根据采样粒子观测值与系统状态观测值之间的偏差动态修正滤波平滑区间的长度, 有效抑制了传统的粒子滤波平滑算法中因区间长度固定可能造成粒子权重重新赋值带来误差增大的问题. 该算法的原理是依据粒子滤波器的工作机理, 把系统状态信息和热槽组成一个抽象的整体, 将粒子滤波平滑过程类比为观测信息和热槽交互的统计力学系统. 在无新的观测信息时, 整个系统遵循热力学第二定律, 即无论从任何初始状态出发, 整个力学系统的熵是非减的; 而当出现新的观测信息时, 粒子滤波器像麦克斯韦妖从新的观测信息中抽取能量传送给热槽, 使整个抽象系统的熵减少, 根据系统熵的递变规律变化对滤波平滑区间的长度加以动态修正, 优化粒子的权重赋值, 进而提高系统状态的估计精度. 利用matlab进行了仿真分析, 验证了该算法的有效性.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回