搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类桑拿法制备的周期性结构Mo金属催化电极及其在电解水制氢中的应用

贺瑞霞 刘伯飞 梁俊辉 高海波 王宁 张奇星 张德坤 魏长春 许盛之 王广才 赵颖 张晓丹

引用本文:
Citation:

类桑拿法制备的周期性结构Mo金属催化电极及其在电解水制氢中的应用

贺瑞霞, 刘伯飞, 梁俊辉, 高海波, 王宁, 张奇星, 张德坤, 魏长春, 许盛之, 王广才, 赵颖, 张晓丹

Sauna-like process prepared periodic molybdenum metal catalytic electrodes and their applications in water reduction

He Rui-Xia, Liu Bo-Fei, Liang Jun-Hui, Gao Hai-Bo, Wang Ning, Zhang Qi-Xing, Zhang De-Kun, Wei Chang-Chun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Zhang Xiao-Dan
PDF
导出引用
  • 采用类桑拿法制备了聚苯乙烯微球模板, 结合双层Mo金属结构, 获得了具有周期性结构的Mo金属催化电极. 通控制氧气对聚苯乙烯球的刻蚀时间, 可有效调制Mo金属催化电极的横、纵向尺寸, 从而获得不同的衬底比表面积. 通过原子力显微镜表面形貌测试、电化学线性扫描、塔菲尔测试以及阻抗谱分析表明: 增大刻蚀时间可有效提高Mo金属催化电极的表面粗糙度和比表面积, 进而降低电荷传输电阻和塔菲尔斜率, 促进催化电极/电解液界面处析氢反应的进行. 采用类桑拿法和双层Mo金属结构制备周期性结构的方法简单, 可大面积化, 同时低温磁控溅射法制备的Mo金属催化电极成本低廉, 温度兼容多种太阳电池器件, 具有形成高效一体化光水解制氢器件的潜力.
    To verify that the molybdenum metals exhibit similar catalysis characteristics as the related molybdenum compounds, i.e. molybdenum selenide (MoSe2) and molybdenum sulfide (MoS2) which have been well known as the high-performing catalysts for hydrogen evolution reactions, we may thus seek a low-cost, process-simplified, scalable, and highly-catalytic counterpart. We have grown periodic molybdenum (Mo) metal catalytic electrodes by employing self-assembled polystyrene (PS) spheres prepared by a sauna-like method as templates, followed by a reactive ion etching (RIE) process with oxygen gas and a double-layer deposition by low-temperature magnetron sputtering. By controlling the etching time of oxygen gas on PS spheres during the RIE process, the lateral and vertical feature sizes of Mo catalytic electrodes can be efficiently controlled, thereby having various surface area ratios. According to surface morphologies from atomic force microscopy, electrochemical linear sweep voltammetry, Tafel, and impendency measurements, we have found that the surface roughness and surface area ratios of Mo metal catalytic electrodes can be enhanced by prolonging the etching times of PS spheres, thereby reducing the charge transfer resistances and Tafel slopes, and then improving the hydrogen evolution reactions at the catalysts/electrolyte interfaces. We attribute this improvement to the fact that the Mo metal catalytic electrodes can efficiently form beneficial Schottky junctions with the electrolyte to enhance the carrier transportation, and the increased surface area ratios can improve the effective area of the Schottky junctions, thereby enhancing the carrier transportation at the catalysts/electrolyte interfaces. Tafel slope of the periodic molybdenum (Mo) metal catalytic electrodes in our work is as low as about 53.9 mV/dec, equivalent to highly catalytic materials MoS2 (55 mV/dec) and MoSe2 (105-120 mV/dec). The proposed periodic Mo catalytic electrodes, which combine a simple sauna-like self-assembly process with a double-layer Mo architecture is scalable and simple; and the surface area of periodic molybdenum (Mo) metal catalytic electrodes can also be flexibly controlled, so that the low-temperature magnetron sputtered Mo metal catalytic electrodes are cost-effective and highly compatible with various photovoltaic devices, highlighting the great potential to form high efficient monolithic solar-water-splitting devices.
      通信作者: 张晓丹, xdzhang@nankai.edu.cn
    • 基金项目: 科技部国际合作项目(批准号: 2014DFE60170)和高等学校博士学科点专项科研基金(批准号: 20120031110039)资助的课题.
      Corresponding author: Zhang Xiao-Dan, xdzhang@nankai.edu.cn
    • Funds: Project supported by the International Cooperation Projects of the Ministry of Science and Technology, China (Grant No. 2014DFE60170) and the Specialized Research Fund for the PhD Program of Higher Education, China (Grant No. 20120031110039).
    [1]

    Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S 2010 Chem. Rev. 110 6446

    [2]

    Minggu L J, Daud W R W, Kassim M B 2010 J. Hydrogen Energ. 35 5233

    [3]

    Abdi F F, Han L, Smets A H M, Zeman M, Dam B, van de Krol R 2013 Nat. Commun. 4 2195

    [4]

    Jiang X G, Jia J M, Lu H F, Zhu Q L, Huang H F 2015, Acta Phys. -Chim. Sin. 31 1399 (in Chinese) [蒋孝佳, 贾建明, 卢晗锋, 朱秋莲, 黄海凤 2015 物理化学学报 31 1399]

    [5]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014物理学报 63 157102]

    [6]

    Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B. Zhang W L 2012 Chin. Phys. B 21 118101

    [7]

    Lin Y, Battaglia C, Boccard M, Hettick M, Yu Z, Ballif C, Javey A 2013 Nano Lett. 13 5615

    [8]

    Sun J, Zhong D K, Gamelin D R 2010 Energy Environ. Sci. 3 1252

    [9]

    Kong D S, W H T, Cha J J, Pasta M, Koski K J, Yao J, Cui Y 2013 Nano Lett. 13 1341

    [10]

    Pu Y C, Wang G, Chang K D, Ling Y, Lin Y K, Fitzmorris B C, Li Y 2013 Nano Lett. 13 3817

    [11]

    Park W I, Yi G C, Kim J W, Park S M 2003 Appl. Phys. Lett. 82 4358

    [12]

    Fu Y N, Jin Z G, Liu G Q, Yin Y X 2009 Synthetic Metals 159 1744

    [13]

    Li S H, Ren L K, Yang Z, Zhang Z Y, Gao F H, Du J L, Zhang S J 2014 Microelectron. Eng. 113 143

    [14]

    Zang Z G, Wen M Q, Chen W W, Zeng Y Fu, Zu Z Q, Zeng X F, Tang X S 2015 Mater. Design 84 418

    [15]

    Liang X J, Liu B F, Bai L S, Liang J H, Gao H B, Zhao Y, Zhang X D 2014 J. Mater. Chem. A 2 13259

    [16]

    Liu B F, Liang X J, Liang J H, Bai L S, Gao H B, Chen Z, Zhang X D 2015 Nanoscale 7 9816

    [17]

    Merki D, Vrubel H, Rovelli L, Fierro S, Hu X 2012 Chem. Sci. 3 2515

  • [1]

    Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S 2010 Chem. Rev. 110 6446

    [2]

    Minggu L J, Daud W R W, Kassim M B 2010 J. Hydrogen Energ. 35 5233

    [3]

    Abdi F F, Han L, Smets A H M, Zeman M, Dam B, van de Krol R 2013 Nat. Commun. 4 2195

    [4]

    Jiang X G, Jia J M, Lu H F, Zhu Q L, Huang H F 2015, Acta Phys. -Chim. Sin. 31 1399 (in Chinese) [蒋孝佳, 贾建明, 卢晗锋, 朱秋莲, 黄海凤 2015 物理化学学报 31 1399]

    [5]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014物理学报 63 157102]

    [6]

    Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B. Zhang W L 2012 Chin. Phys. B 21 118101

    [7]

    Lin Y, Battaglia C, Boccard M, Hettick M, Yu Z, Ballif C, Javey A 2013 Nano Lett. 13 5615

    [8]

    Sun J, Zhong D K, Gamelin D R 2010 Energy Environ. Sci. 3 1252

    [9]

    Kong D S, W H T, Cha J J, Pasta M, Koski K J, Yao J, Cui Y 2013 Nano Lett. 13 1341

    [10]

    Pu Y C, Wang G, Chang K D, Ling Y, Lin Y K, Fitzmorris B C, Li Y 2013 Nano Lett. 13 3817

    [11]

    Park W I, Yi G C, Kim J W, Park S M 2003 Appl. Phys. Lett. 82 4358

    [12]

    Fu Y N, Jin Z G, Liu G Q, Yin Y X 2009 Synthetic Metals 159 1744

    [13]

    Li S H, Ren L K, Yang Z, Zhang Z Y, Gao F H, Du J L, Zhang S J 2014 Microelectron. Eng. 113 143

    [14]

    Zang Z G, Wen M Q, Chen W W, Zeng Y Fu, Zu Z Q, Zeng X F, Tang X S 2015 Mater. Design 84 418

    [15]

    Liang X J, Liu B F, Bai L S, Liang J H, Gao H B, Zhao Y, Zhang X D 2014 J. Mater. Chem. A 2 13259

    [16]

    Liu B F, Liang X J, Liang J H, Bai L S, Gao H B, Chen Z, Zhang X D 2015 Nanoscale 7 9816

    [17]

    Merki D, Vrubel H, Rovelli L, Fierro S, Hu X 2012 Chem. Sci. 3 2515

  • [1] 张婧祺, 郝奇, 吕国建, 熊必金, 乔吉超. 基于微观结构非均匀性理解非晶态聚苯乙烯的应力松弛行为. 物理学报, 2024, 73(3): 037601. doi: 10.7498/aps.73.20231240
    [2] 田宝贤, 王钊, 胡凤明, 高智星, 班晓娜, 李静. “天光一号”驱动的聚苯乙烯高压状态方程测量. 物理学报, 2021, 70(19): 196401. doi: 10.7498/aps.70.20210240
    [3] 张凤, 廉森, 王明月, 陈雪, 殷继康, 何磊, 潘华卿, 任俊峰, 陈美娜. 掺杂、应变对析氢反应催化剂NiP2性能的影响. 物理学报, 2021, 70(14): 148802. doi: 10.7498/aps.70.20210298
    [4] 李壮, 底兰波, 于锋, 张秀玲. 冷等离子体强化制备金属催化剂研究进展. 物理学报, 2018, 67(21): 215202. doi: 10.7498/aps.67.20181451
    [5] 晋中华, 刘伯飞, 梁俊辉, 王宁, 张奇星, 刘彩池, 赵颖, 张晓丹. 室温合成非晶三硫化钼析氢催化剂的性能调制以及其在串联制氢器件中的应用. 物理学报, 2016, 65(11): 118801. doi: 10.7498/aps.65.118801
    [6] 杨秀清, 胡亦, 张景路, 王艳秋, 裴春梅, 刘飞. AuPd纳米粒子作为催化剂制备硼纳米线及其场发射性质. 物理学报, 2014, 63(4): 048102. doi: 10.7498/aps.63.048102
    [7] 李英, 胡艳军. 激光波长对纳米光纤俘获和输送聚苯乙烯微球的影响. 物理学报, 2014, 63(4): 048703. doi: 10.7498/aps.63.048703
    [8] 叶佳宇, 刘亚丽, 王靖林, 何垚. Zr催化剂对NaAlH4和Na3AlH6可逆储氢性能的影响. 物理学报, 2010, 59(6): 4178-4185. doi: 10.7498/aps.59.4178
    [9] 牛志强, 方 炎. 催化剂组分对制备单壁碳纳米管的影响. 物理学报, 2007, 56(3): 1796-1801. doi: 10.7498/aps.56.1796
    [10] 丁才蓉, 王 冰, 杨国伟, 汪河洲. 催化剂对热蒸发法生长SnO2纳米晶体质量的影响及其发光光谱研究. 物理学报, 2007, 56(3): 1775-1778. doi: 10.7498/aps.56.1775
    [11] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [12] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [13] 王晓冬, 董 鹏, 仪桂云. 制备高质量聚苯乙烯微球胶粒晶体的蒸发自组装法. 物理学报, 2006, 55(4): 2092-2098. doi: 10.7498/aps.55.2092
    [14] 李振华, 王琴妹, 王 淼. 金属铈催化剂对单壁纳米碳管生长和结构的影响. 物理学报, 2005, 54(5): 2158-2161. doi: 10.7498/aps.54.2158
    [15] 陈红艺, 郭红莲, 倪培根, 张 琦, 程丙英, 张道中. 聚苯乙烯微粒光子晶体的反常透过特性. 物理学报, 2003, 52(9): 2155-2158. doi: 10.7498/aps.52.2155
    [16] 张红瑞, 郭新勇, 丁 佩, 杜祖亮, 梁二军. 不同催化剂热解法制备硼碳氮纳米管过程中的影响. 物理学报, 2003, 52(7): 1808-1811. doi: 10.7498/aps.52.1808
    [17] 王晓强, 谢二庆, 钱秉中, 贺德衍, 朱智勇, 金运范. 离子辐照对聚苯乙烯低温导电特性的影响. 物理学报, 2002, 51(5): 1094-1097. doi: 10.7498/aps.51.1094
    [18] 张继成, 王红艳, 唐永建, 朱正和, 吴卫东. 氘、氚代聚苯乙烯单体abinitio研究. 物理学报, 2002, 51(6): 1221-1226. doi: 10.7498/aps.51.1221
    [19] 张涛, 康敏成, 路文昌. 杂质对担载式催化剂化学吸附的影响. 物理学报, 1990, 39(12): 2025-2028. doi: 10.7498/aps.39.2025
    [20] 徐积仁, 李宜荣. 苯乙烯和聚苯乙烯的联合散射光谱研究. 物理学报, 1961, 17(12): 617-620. doi: 10.7498/aps.17.617
计量
  • 文章访问数:  4997
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-27
  • 修回日期:  2015-11-30
  • 刊出日期:  2016-02-05

/

返回文章
返回