搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2微粒对远程荧光粉膜及白光发光二极管器件光色性能的影响

卓宁泽 张娜 李博超 李文铨 何清洋 施丰华 朱月华 邢海东 王海波

引用本文:
Citation:

TiO2微粒对远程荧光粉膜及白光发光二极管器件光色性能的影响

卓宁泽, 张娜, 李博超, 李文铨, 何清洋, 施丰华, 朱月华, 邢海东, 王海波

Investigation of photo-chromic properties of remote phosphor film and white light emitting diode mixed with TiO2 particles

Zhuo Ning-Ze, Zhang Na, Li Bo-Chao, Li Wen-Quan, He Qing-Yang, Shi Feng-Hua, Zhu Yue-Hua, Xing Hai-Dong, Wang Hai-Bo
PDF
导出引用
  • 利用热压法将TiO2微粒掺入至YAG:Ce荧光粉和硅树脂中制备出远程荧光粉膜并封装成白光发光二极管(LED)器件, 通过荧光粉相对亮度仪、双积分球测试系统和可见光光谱分析系统对样品的光色性能及机理进行了研究. 结果表明: TiO2的散射效应能够显著提高蓝光的利用率和黄光的透射强度, 白光LED器件的光通量在TiO2浓度为0.966 g/cm3 时达到最高值415.28 lm(@300 mA, 9.3 V), 提高了8.15%, 相关色温从冷白6900 K逐渐变化至暖白3832 K. TiO2的掺入不仅提高了远程荧光粉膜的发射强度和白光LED器件的光通量, 同时能调控其相关色温.
    Based on the hot pressing method, the remote phosphor films are prepared by adding TiO2 particles into YAG:Ce and silicon binder, and then they are packaged into white light emitting diode (WLED) device with chip on board (COB) blue light source. The photo-chromic properties and mechanism are studied and calculated. Based on Mie theory and Henyey-Greenstein function, forward scattering is the main light scattering form of YAG:Ce phosphor powder, while the forward scattering intensity is close to the back scattering intensity of TiO2 particles. The emission spectral intensity and relative luminance of remote phosphor film change with increasing the concentration of TiO2 particles, and the optimum concentration is 0.966 g/cm3. Forward transmission intensity and back reflection intensity are calculated and analyzed, when the concentration of TiO2 is low, the forward transmission intensity of blue light is stronger than that of yellow light and the main transmission form is forward transmission, while the forward and backward intensity of yellow light are similar because of isotropy. With increasing the concentration of TiO2, the forward intensity of blue light gradually decreases, and the transmission intensity is lower than that of yellow light. The forward and backward intensity of yellow light reach their maxima when the TiO2 concentration is 0.966 g/cm3. The main reason for this phenomenon is that the increasing of the utilization ratio between blue light and transmission of yellow light is affected by the strong scattering ability of TiO2. Finally the WLEDs are packaged by remote phosphor films and COB blue light source, the luminous flux of WLED reaches 415.28 lm (at 300 mA and 9.3 V) at a concentration of 0.966 g/cm3, which is increased by 8.15% compared with the concentration in the case of no TiO2 mixing. Besides, the correlated color temperature changes from cool white 6900 K to warm white 3832 K gradually. Consequently, the adding of TiO2 particles can not only improve the emission intensity of remote phosphor film and the luminous flux of WLED, but also regulate the correlated color temperature.
      通信作者: 王海波, Wanghaibo88@163.com
    • 基金项目: 国家高技术研究发展计划 (批准号: 2011AA03 A107)和江苏省科技成果转化计划(批准号: BA2014073)资助的课题.
      Corresponding author: Wang Hai-Bo, Wanghaibo88@163.com
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA03 A107) and the Scientific and Technological Achievements Transformation Plan of Jiangsu Province, China(Grant No. BA2014073).
    [1]

    Zukauskas A, Shur M S, Caska R 2002 Introduction to Solid-State Lighting (New York: John Wiley) pp1-6

    [2]

    Liu S, Luo X B 2011 LED Packaging for Lighting Applications (New York: John Wiley) pp1-28

    [3]

    Hu R, Luo X B, Zheng H 2012 J. Appl. Phys. 21 09 MK05

    [4]

    Xiao H, L Y J, Xu Y X, Zhu L H, Chen G L, Gao Y L, Fan X G, Xue R C 2014 Chin. J. Lumin. 35 66 (in Chinese) [肖华, 吕毅军, 徐云鑫, 朱丽虹, 陈国龙, 高玉琳, 范贤光, 薛睿超 2014 发光学报 35 66]

    [5]

    Dong M Z, Wei J, Ye H Y, Yuan C M, Zhang G Q 2013 J. Semicond. 34 053007

    [6]

    Tsai P Y, Huang H K, Sung J M, Kan M C, Wang Y H 2015 IEEE Electr. Dev. Lett. 36 250

    [7]

    Narendran N, Gu F, Freyssinier-Nova J P, Zhu Y 2005 Phys. Status Solid A 202 R60

    [8]

    Allen S C, Steckl A J 2007 J. Disp. Technol. 3 155

    [9]

    Lin M T, Ying S P, Lin M Y, Tai K Y, Tai S C, Liu C H, Chen J C, Sun C C 2010 Photon. Technol. Lett. 22 574

    [10]

    Lin M T, Ying S P, Lin M Y, Tai K Y, Tai S C, Liu C H, Chen J C, Sun C C 2014 IEEE Trans. Dev. Mat. Re. 14 358

    [11]

    Xiao H, Lu Y J, Shin T M, Zhu L H, Lin S Q, Pagni P J, Chen Z 2014 IEEE Photon. J. 6 1

    [12]

    Tian H, Liu J W, Qiu K, Song J, Wang D J 2012 Chin. Phys. B 21 098504

    [13]

    Chen H C, Chen K J, Lin C C, Wang C H, Han H V, Tsai H H, Kuo H T, Chien S H, Shih M H, Kuo H C 2012 Nanotechnology 231

    [14]

    Song Y H, Ji E K, Bak S H, Kim Y N, Lee D B, Jung M K, Jeong B W, Yoon D H 2016 Chem. Eng. J. 287 511

    [15]

    Henyey L G, Greenstein J L 1941 Astrophys. J. 93 70

    [16]

    Qian K Y, Ma J, Fu W, Luo Y 2012 Acta Phys. Sin. 61 204201 (in Chinese) [钱可元, 马俊, 付伟, 罗毅 2012 物理学报 61 204201]

    [17]

    Liu Z Y 2010 Ph. D. Dissertation(Wuhan: Huazhong University of Science and Technology) (in Chinese) [刘宗源 2010 博士学位论文 (武汉: 华中科技大学)]

    [18]

    Liu Z Y, Liu S, Wang K, Luo X B 2010 Appl. Opt. 49 247

    [19]

    Hsiao S L, Hu N C, Wu C C 2013 Appl. Phys. Express 6 032102

    [20]

    Heller W 1965 J. Phys. Chem. 69 1123

  • [1]

    Zukauskas A, Shur M S, Caska R 2002 Introduction to Solid-State Lighting (New York: John Wiley) pp1-6

    [2]

    Liu S, Luo X B 2011 LED Packaging for Lighting Applications (New York: John Wiley) pp1-28

    [3]

    Hu R, Luo X B, Zheng H 2012 J. Appl. Phys. 21 09 MK05

    [4]

    Xiao H, L Y J, Xu Y X, Zhu L H, Chen G L, Gao Y L, Fan X G, Xue R C 2014 Chin. J. Lumin. 35 66 (in Chinese) [肖华, 吕毅军, 徐云鑫, 朱丽虹, 陈国龙, 高玉琳, 范贤光, 薛睿超 2014 发光学报 35 66]

    [5]

    Dong M Z, Wei J, Ye H Y, Yuan C M, Zhang G Q 2013 J. Semicond. 34 053007

    [6]

    Tsai P Y, Huang H K, Sung J M, Kan M C, Wang Y H 2015 IEEE Electr. Dev. Lett. 36 250

    [7]

    Narendran N, Gu F, Freyssinier-Nova J P, Zhu Y 2005 Phys. Status Solid A 202 R60

    [8]

    Allen S C, Steckl A J 2007 J. Disp. Technol. 3 155

    [9]

    Lin M T, Ying S P, Lin M Y, Tai K Y, Tai S C, Liu C H, Chen J C, Sun C C 2010 Photon. Technol. Lett. 22 574

    [10]

    Lin M T, Ying S P, Lin M Y, Tai K Y, Tai S C, Liu C H, Chen J C, Sun C C 2014 IEEE Trans. Dev. Mat. Re. 14 358

    [11]

    Xiao H, Lu Y J, Shin T M, Zhu L H, Lin S Q, Pagni P J, Chen Z 2014 IEEE Photon. J. 6 1

    [12]

    Tian H, Liu J W, Qiu K, Song J, Wang D J 2012 Chin. Phys. B 21 098504

    [13]

    Chen H C, Chen K J, Lin C C, Wang C H, Han H V, Tsai H H, Kuo H T, Chien S H, Shih M H, Kuo H C 2012 Nanotechnology 231

    [14]

    Song Y H, Ji E K, Bak S H, Kim Y N, Lee D B, Jung M K, Jeong B W, Yoon D H 2016 Chem. Eng. J. 287 511

    [15]

    Henyey L G, Greenstein J L 1941 Astrophys. J. 93 70

    [16]

    Qian K Y, Ma J, Fu W, Luo Y 2012 Acta Phys. Sin. 61 204201 (in Chinese) [钱可元, 马俊, 付伟, 罗毅 2012 物理学报 61 204201]

    [17]

    Liu Z Y 2010 Ph. D. Dissertation(Wuhan: Huazhong University of Science and Technology) (in Chinese) [刘宗源 2010 博士学位论文 (武汉: 华中科技大学)]

    [18]

    Liu Z Y, Liu S, Wang K, Luo X B 2010 Appl. Opt. 49 247

    [19]

    Hsiao S L, Hu N C, Wu C C 2013 Appl. Phys. Express 6 032102

    [20]

    Heller W 1965 J. Phys. Chem. 69 1123

  • [1] 姜洪喜, 吕树臣. Sm3+掺杂NaLa(WO4)2单一基质白光荧光粉制备及发光性能. 物理学报, 2021, 70(17): 177801. doi: 10.7498/aps.70.20210493
    [2] 管胜婕, 周林箭, 沈成梅, 张勇. 蓝色荧光有机发光二极管中的激子-电荷相互作用. 物理学报, 2020, 69(16): 167101. doi: 10.7498/aps.69.20191930
    [3] 赵旺, 平兆艳, 郑庆华, 周薇薇. 白光发光二极管用SrGdLiTeO6:Eu3+红色荧光粉的浓度猝灭和温度猝灭行为. 物理学报, 2018, 67(24): 247801. doi: 10.7498/aps.67.20181523
    [4] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [5] 周仁迪, 黄雪飞, 齐智坚, 黄维刚. Ca2Si(O4-xNx):Eu2+绿色荧光粉的制备及其发光性能. 物理学报, 2014, 63(19): 197801. doi: 10.7498/aps.63.197801
    [6] 王志军, 刘海燕, 杨勇, 蒋海峰, 段平光, 李盼来, 杨志平, 郭庆林. Ba2Ca(PO4)2:Eu2+蓝色荧光粉的合成及其发光特性. 物理学报, 2014, 63(7): 077802. doi: 10.7498/aps.63.077802
    [7] 刘浩杰, 蓝天, 倪国强. 室内可见光通信发光二极管阵列发射性能的研究. 物理学报, 2014, 63(23): 238503. doi: 10.7498/aps.63.238503
    [8] 毛金伟, 吕树臣, 曲秀荣, 何冬丽, 孟庆裕. 发光二极管用红色荧光粉Sr0.8-xBaxEu0.2WO4的制备和性质研究. 物理学报, 2013, 62(3): 037803. doi: 10.7498/aps.62.037803
    [9] 王倩, 慈志鹏, 王育华, 朱革, 温艳, 刘碧桃, 阙美丹. Mg5SnB2O10:Eu3+, Bi3+—-一种用于发光二极管的红色荧光粉的制备及其发光性能的研究. 物理学报, 2012, 61(21): 217802. doi: 10.7498/aps.61.217802
    [10] 张宣妮, 张淳民. 静态偏振风成像干涉仪光传输特性和光通量改善. 物理学报, 2012, 61(10): 104210. doi: 10.7498/aps.61.104210
    [11] 钱可元, 马骏, 付伟, 罗毅. 基于Mie散射理论的白光发光二极管荧光粉散射特性研究. 物理学报, 2012, 61(20): 204201. doi: 10.7498/aps.61.204201
    [12] 徐昕伟, 崔碧峰, 朱彦旭, 郭伟玲, 李伟国. 利用介质光子晶体提高红光发光二极管的光通量的研究. 物理学报, 2012, 61(15): 154213. doi: 10.7498/aps.61.154213
    [13] 任艳东, 吕树臣. 发光二极管用SrWO4:Eu3+红光荧光粉激发谱强度的调控. 物理学报, 2011, 60(8): 087804. doi: 10.7498/aps.60.087804
    [14] 唐红霞, 吕树臣. 发光二极管用红色荧光粉SrMoO4:Eu3+的制备和发射性质. 物理学报, 2011, 60(3): 037805. doi: 10.7498/aps.60.037805
    [15] 白鑫, 张淳民, 景春元, 关小伟, 曹芬, 李艳娜, 谢林利. 干涉成像光谱仪光通量的计算与分析. 物理学报, 2011, 60(7): 070703. doi: 10.7498/aps.60.070703
    [16] 丁旭, 徐琰, 郭崇峰. 蓝色荧光粉Sr2B5O9Cl:Eu2+发光特性的研究. 物理学报, 2010, 59(9): 6632-6636. doi: 10.7498/aps.59.6632
    [17] 王保争, 张安琪, 吴宏滨, 杨伟, 文尚胜. 一种基于荧光材料的聚合物白光发光二极管. 物理学报, 2010, 59(6): 4240-4244. doi: 10.7498/aps.59.4240
    [18] 杨志平, 刘玉峰, 王利伟, 余泉茂, 熊志军, 徐小岭. 用于白光LED的单一基质白光荧光粉Ca2SiO3Cl2:Eu2+,Mn2+的发光性质. 物理学报, 2007, 56(1): 546-550. doi: 10.7498/aps.56.546
    [19] 杨志平, 刘玉峰. Eu2+激活的Ca3SiO5绿色荧光粉的制备和发光特性研究. 物理学报, 2006, 55(9): 4946-4950. doi: 10.7498/aps.55.4946
    [20] 胡恺生, 付德惠, 王永珍. 用积分球和分布光强计测量红、黄、绿发光二极管(LED)的总光通. 物理学报, 1978, 27(3): 303-313. doi: 10.7498/aps.27.303
计量
  • 文章访问数:  4743
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-23
  • 修回日期:  2015-12-09
  • 刊出日期:  2016-03-05

/

返回文章
返回