搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单环多段光强分布检测光学涡旋拓扑荷值

张昊 常琛亮 夏军

单环多段光强分布检测光学涡旋拓扑荷值

张昊, 常琛亮, 夏军
PDF
导出引用
导出核心图
  • 针对涡旋光束检测范围局限这一问题, 提出了一种新的光学涡旋拓扑荷值检测方法-单环多段光强分布检测法, 它以分段数和环半径为两大检测常数, 将检测涡旋光束拓扑荷值范围扩大到了128种, 与以往利用旁瓣调控光学涡旋检测拓扑荷值方法相比, 检测范围扩大了1个数量级. 单环多段光强分布是基于计算机全息图实现在远场衍射焦平面上环半径相等的两束携带不同拓扑荷数的涡旋光束叠加后形成的光强分布. 计算机模拟和光学实验验证了所提出方法的可行性, 该方法在自由空间光通信领域具有一定的研究价值和应用潜力.
      通信作者: 夏军, xiajun@seu.edu.cn
    [1]

    Curtis J E, Grier D G 2003 Phys. Rev. Lett. 90 133901

    [2]

    Swartlander G A 2001 Opt. Lett. 26 497

    [3]

    Gan X T, Zhang P, Liu S, Xiao F J, Zhao J L 2008 Chin. Phys. Lett. 25 3280

    [4]

    Ding P F, Pu J X 2012 Acta Phys. Sin. 61 174201 (in Chinese) [丁攀峰, 蒲继雄 2012 物理学报 61 174201]

    [5]

    Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210 (in Chinese) [方桂娟, 孙顺红, 蒲继雄 2012 物理学报 61 064210]

    [6]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P 2014 Appl. Phys. Lett. 104 231110

    [7]

    Chen C R, Yeh C H, Shih M F 2014 Opt. Express 22 3180

    [8]

    Dholakia K, Čžmr T 2011 Nature Photon. 5 335

    [9]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [10]

    Rodenburg B, Mirhosseini M, Malik M, Rodenburg B, Mirhosseini M, Malik M, Magaa-LoaizaO, Yanakas M, Maher L, Steinhoff N, Tyler G, Boyd R 2014 New J. Phys. 16 033020

    [11]

    Lehmuskero A, Li Y, Johansson P 2014 Opt. Express 22 434

    [12]

    Liu Y, Li H N, Hu Y, Du A 2014 Chin. Phys. B 23 087501

    [13]

    Zhou Z H, Guo Y K, Zhu L 2014 Chin. Phys. B 23 044201

    [14]

    Hickmann J M, Fonseca E J S, Soares W C, Chvez-Cerda S 2010 Phys. Rev. Lett. 105 053904

    [15]

    Ghai D P, Senthilkumaran P, Sirohi R S 2009 Opt. Lasers Eng. 47 123

    [16]

    Sztul H I, Alfano R R 2006 Opt. Lett. 31 999

    [17]

    Zhou H, Yan S, Dong J, Zhang X 2014 Opt. Lett. 39 3173

    [18]

    Guzzinati G, Clark L, Bch A, Verbeeck J 2014 Phys. Rev. A 89 025803

    [19]

    Saitoh K, Hasegawa Y, Hirakawa K, Tanaka N, Uchida M 2013 Phys. Rev. Lett. 111 074801

    [20]

    Xin J T, Gao C Q, Li C, Wang Z 2012 Acta Phys. Sin. 61 174202 (in Chinese) [辛景寿, 高春清, 李辰, 王铮 2012 物理学报 61 174202]

    [21]

    Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W, Padgett M J 2010 Phys. Rev. Lett. 105 153601

    [22]

    Lavery M P J, Berkhout G C G, Courtial J, Padgett M J 2011 J. Opt. 13 064006

    [23]

    Chen J, Kuang D F, Fang Z L 2009 Chin. Phys. Lett. 26 4210

    [24]

    Chen J, Zhao X, Fang Z L, Zhu S W, Yuan X C 2010 Opt. Lett. 35 1485

  • [1]

    Curtis J E, Grier D G 2003 Phys. Rev. Lett. 90 133901

    [2]

    Swartlander G A 2001 Opt. Lett. 26 497

    [3]

    Gan X T, Zhang P, Liu S, Xiao F J, Zhao J L 2008 Chin. Phys. Lett. 25 3280

    [4]

    Ding P F, Pu J X 2012 Acta Phys. Sin. 61 174201 (in Chinese) [丁攀峰, 蒲继雄 2012 物理学报 61 174201]

    [5]

    Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210 (in Chinese) [方桂娟, 孙顺红, 蒲继雄 2012 物理学报 61 064210]

    [6]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P 2014 Appl. Phys. Lett. 104 231110

    [7]

    Chen C R, Yeh C H, Shih M F 2014 Opt. Express 22 3180

    [8]

    Dholakia K, Čžmr T 2011 Nature Photon. 5 335

    [9]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [10]

    Rodenburg B, Mirhosseini M, Malik M, Rodenburg B, Mirhosseini M, Malik M, Magaa-LoaizaO, Yanakas M, Maher L, Steinhoff N, Tyler G, Boyd R 2014 New J. Phys. 16 033020

    [11]

    Lehmuskero A, Li Y, Johansson P 2014 Opt. Express 22 434

    [12]

    Liu Y, Li H N, Hu Y, Du A 2014 Chin. Phys. B 23 087501

    [13]

    Zhou Z H, Guo Y K, Zhu L 2014 Chin. Phys. B 23 044201

    [14]

    Hickmann J M, Fonseca E J S, Soares W C, Chvez-Cerda S 2010 Phys. Rev. Lett. 105 053904

    [15]

    Ghai D P, Senthilkumaran P, Sirohi R S 2009 Opt. Lasers Eng. 47 123

    [16]

    Sztul H I, Alfano R R 2006 Opt. Lett. 31 999

    [17]

    Zhou H, Yan S, Dong J, Zhang X 2014 Opt. Lett. 39 3173

    [18]

    Guzzinati G, Clark L, Bch A, Verbeeck J 2014 Phys. Rev. A 89 025803

    [19]

    Saitoh K, Hasegawa Y, Hirakawa K, Tanaka N, Uchida M 2013 Phys. Rev. Lett. 111 074801

    [20]

    Xin J T, Gao C Q, Li C, Wang Z 2012 Acta Phys. Sin. 61 174202 (in Chinese) [辛景寿, 高春清, 李辰, 王铮 2012 物理学报 61 174202]

    [21]

    Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W, Padgett M J 2010 Phys. Rev. Lett. 105 153601

    [22]

    Lavery M P J, Berkhout G C G, Courtial J, Padgett M J 2011 J. Opt. 13 064006

    [23]

    Chen J, Kuang D F, Fang Z L 2009 Chin. Phys. Lett. 26 4210

    [24]

    Chen J, Zhao X, Fang Z L, Zhu S W, Yuan X C 2010 Opt. Lett. 35 1485

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1700
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-30
  • 修回日期:  2015-11-23
  • 刊出日期:  2016-03-05

单环多段光强分布检测光学涡旋拓扑荷值

  • 1. 东南大学物理系, 南京 211189;
  • 2. 东南大学电子科学与工程学院显示技术研究中心, 南京 210096
  • 通信作者: 夏军, xiajun@seu.edu.cn

摘要: 针对涡旋光束检测范围局限这一问题, 提出了一种新的光学涡旋拓扑荷值检测方法-单环多段光强分布检测法, 它以分段数和环半径为两大检测常数, 将检测涡旋光束拓扑荷值范围扩大到了128种, 与以往利用旁瓣调控光学涡旋检测拓扑荷值方法相比, 检测范围扩大了1个数量级. 单环多段光强分布是基于计算机全息图实现在远场衍射焦平面上环半径相等的两束携带不同拓扑荷数的涡旋光束叠加后形成的光强分布. 计算机模拟和光学实验验证了所提出方法的可行性, 该方法在自由空间光通信领域具有一定的研究价值和应用潜力.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回