搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于von Neumann熵的双路径纠缠量子微波信号生成质量评估方法

李响 吴德伟 王希 苗强 陈坤 杨春燕

一种基于von Neumann熵的双路径纠缠量子微波信号生成质量评估方法

李响, 吴德伟, 王希, 苗强, 陈坤, 杨春燕
PDF
导出引用
导出核心图
  • 针对目前没有合适的方法从产生方来表征纠缠量子微波信号的质量好坏, 提出了一种基于von Neumann熵的双路径纠缠量子微波信号生成质量评估方法. 利用双模压缩真空态描述了纠缠量子微波的信号格式, 给出了光子数与压缩参量之间的函数关系, 以熵评估纠缠态信号所占比例, 分析了熵与压缩参量和光子数之间的关系. 仿真结果表明, 纠缠量子微波信号中的光子数是由压缩参量决定的, 它们之间呈指数平方的规律性变化; 熵随着压缩参量的增大而减小, 但是减小的趋势越来越平缓, 近似呈负指数关系, 熵的极限值约为65%. 研究结果表明, 通过选择合适的压缩参量可以提高纠缠微波信号生成质量以满足实际需要, 因此, 本研究对于生成双路径纠缠量子微波电路参数选择、提高系统可用性提供了方法和依据.
      通信作者: 吴德伟, wudewei74609@126.com
    • 基金项目: 国家自然科学基金(批准号: 61573372)资助的课题.
    [1]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [2]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev 47 777

    [3]

    Raimond J, Brune M, Haroche S 2001 Rev. Mod. Phys 73 565

    [4]

    Braunstein S L, Loock P 2005 Rev. Mod. Phys 77 513

    [5]

    Clarke J, Wilhelm F K 2008 Nature. 453 1031

    [6]

    Wu Y L, Deng H, Yu H F, Xue G M, Tian Y, Li J, Chen Y F, Zhao S P, Zheng D N 2013 Chin. Phys. B 22 060309

    [7]

    Nakamura Y, Yamamoto T {2012 IEEE Photon. 5 0701406

    [8]

    Pechal M, Huthmacher L, Eichler C, Zeytinolu S, Abdumalikov A A, Berger J S, Wallraff A, Filipp S {2014 Phys. Rev. X 4 041010

    [9]

    Ware M E 2015 Ph. D. Dissertation (Tuscaloosa: University of Alabama)

    [10]

    Andersen U L, Neergaard-Nielsen J S, van Loock P, Furusawa A 2015 Nature Phys. 11 713

    [11]

    Wallra A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [12]

    Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A, Gross R 2010 Nature Phys 6 772

    [13]

    Lucero E, Barends R, Chen Y, Kelly J, Mariantoni M, Megrant A, Malley P O, Sank D, Vainsencher A, Wenner J, White T, Yin Y, Cleland A N, Martinis J M 2012 Nature Phys. 8 719

    [14]

    Lin Z R, Inomata K, Oliver W D, Koshino K, Nakamura Y, Tsai J S, Yamamoto T 2013 Appl. Phys. Lett. 103 132602

    [15]

    Liu X, Liao Q H, Fang G Y, Wang Y Y, Liu S T 2014 Chin. Phys. B 23 020311

    [16]

    Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J Girvin S M, Devoret M H 2010 Nature 465 64

    [17]

    Eichler C, Bozyigit D, Lang C, Baur M, Steffen L, Fink J M, Filipp S, Wallraff A 2011 Phys. Rev. Lett. 107 113601

    [18]

    Pillet J D, Flurin E, Mallet F, Huard B 2015 Appl. Phys. Lett. 106 222603

    [19]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503

    [20]

    Trif M, Simon P {2015 Phys. Rev. B 92 014503

    [21]

    Menzel E P, Candia R D, Deppe F, Eder P, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R 2012 Phys. Rev. Lett. 109 250502

    [22]

    Menzel E P 2013 Ph. D. Dissertation (Munchen: Technische Universitat Munchen)

    [23]

    Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012 Phys. Rev. Lett. 109 183901

    [24]

    Eder P 2012 Ph. D. Dissertation (Munchen: Technische Universitat Munchen)

  • [1]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [2]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev 47 777

    [3]

    Raimond J, Brune M, Haroche S 2001 Rev. Mod. Phys 73 565

    [4]

    Braunstein S L, Loock P 2005 Rev. Mod. Phys 77 513

    [5]

    Clarke J, Wilhelm F K 2008 Nature. 453 1031

    [6]

    Wu Y L, Deng H, Yu H F, Xue G M, Tian Y, Li J, Chen Y F, Zhao S P, Zheng D N 2013 Chin. Phys. B 22 060309

    [7]

    Nakamura Y, Yamamoto T {2012 IEEE Photon. 5 0701406

    [8]

    Pechal M, Huthmacher L, Eichler C, Zeytinolu S, Abdumalikov A A, Berger J S, Wallraff A, Filipp S {2014 Phys. Rev. X 4 041010

    [9]

    Ware M E 2015 Ph. D. Dissertation (Tuscaloosa: University of Alabama)

    [10]

    Andersen U L, Neergaard-Nielsen J S, van Loock P, Furusawa A 2015 Nature Phys. 11 713

    [11]

    Wallra A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [12]

    Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A, Gross R 2010 Nature Phys 6 772

    [13]

    Lucero E, Barends R, Chen Y, Kelly J, Mariantoni M, Megrant A, Malley P O, Sank D, Vainsencher A, Wenner J, White T, Yin Y, Cleland A N, Martinis J M 2012 Nature Phys. 8 719

    [14]

    Lin Z R, Inomata K, Oliver W D, Koshino K, Nakamura Y, Tsai J S, Yamamoto T 2013 Appl. Phys. Lett. 103 132602

    [15]

    Liu X, Liao Q H, Fang G Y, Wang Y Y, Liu S T 2014 Chin. Phys. B 23 020311

    [16]

    Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J Girvin S M, Devoret M H 2010 Nature 465 64

    [17]

    Eichler C, Bozyigit D, Lang C, Baur M, Steffen L, Fink J M, Filipp S, Wallraff A 2011 Phys. Rev. Lett. 107 113601

    [18]

    Pillet J D, Flurin E, Mallet F, Huard B 2015 Appl. Phys. Lett. 106 222603

    [19]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503

    [20]

    Trif M, Simon P {2015 Phys. Rev. B 92 014503

    [21]

    Menzel E P, Candia R D, Deppe F, Eder P, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R 2012 Phys. Rev. Lett. 109 250502

    [22]

    Menzel E P 2013 Ph. D. Dissertation (Munchen: Technische Universitat Munchen)

    [23]

    Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012 Phys. Rev. Lett. 109 183901

    [24]

    Eder P 2012 Ph. D. Dissertation (Munchen: Technische Universitat Munchen)

  • [1] 王湘林, 吴德伟, 李响, 朱浩男, 陈坤, 方冠. 一种生成质量最优路径纠缠微波信号的压缩参量选择方法. 物理学报, 2017, 66(23): 230302. doi: 10.7498/aps.66.230302
    [2] 祝世宁, 周青春. Λ型三能级原子与数态单模光场互作用系统的纠缠特性. 物理学报, 2005, 54(5): 2043-2048. doi: 10.7498/aps.54.2043
    [3] 黄燕霞, 黄熙, 赵朋义, 詹明生. 压缩真空场与原子非线性作用过程中的纠缠与消纠缠. 物理学报, 2004, 53(1): 75-81. doi: 10.7498/aps.53.75
    [4] 魏天丽, 吴德伟, 杨春燕, 罗均文, 李响, 朱浩男. 基于光子计数的纠缠微波压缩角锁定. 物理学报, 2019, 68(9): 090301. doi: 10.7498/aps.68.20182077
    [5] 郭光灿, 柴金华. 光泵三能级原子体系产生光子数压缩态. 物理学报, 1991, 40(6): 912-922. doi: 10.7498/aps.40.912
    [6] 卢道明. 三参数双模压缩粒子数态的量子特性. 物理学报, 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [7] 赵冬梅, 李志刚, 郭龑强, 李刚, 王军民, 张天才. 弱抽运下光学参量过程中压缩真空场的光子统计性质. 物理学报, 2010, 59(9): 6231-6236. doi: 10.7498/aps.59.6231
    [8] 任 珉, 康冬鹏, 刘正君, 刘树田, 马爱群, 钱 妍. k光子Jaynes-Cummings模型光场的熵压缩. 物理学报, 2008, 57(2): 873-879. doi: 10.7498/aps.57.873
    [9] 王浩, 刘国权, 栾军华. 凸形晶粒的各向异性三维von Neumann方程研究. 物理学报, 2012, 61(4): 048102. doi: 10.7498/aps.61.048102
    [10] 季玲玲, 吴令安. 光学超晶格中级联参量过程制备纠缠光子对. 物理学报, 2005, 54(2): 736-741. doi: 10.7498/aps.54.736
    [11] 刘小娟, 赵明卓, 刘一曼, 周并举, 彭朝晖. 运动原子与光场依赖强度纠缠下最佳熵压缩态的制备和控制. 物理学报, 2010, 59(5): 3227-3235. doi: 10.7498/aps.59.3227
    [12] 李百宏, 王豆豆, 庞华锋, 张涛, 解忧, 高峰, 董瑞芳, 李永放, 张首刚. 用二元相位调制实现啁啾纠缠光子对关联时间的压缩. 物理学报, 2017, 66(4): 044206. doi: 10.7498/aps.66.044206
    [13] 周并举, 刘小娟, 方卯发, 周清平. 双光子过程中任意初态原子的信息熵压缩. 物理学报, 2006, 55(2): 704-711. doi: 10.7498/aps.55.704
    [14] 何英秋, 丁东, 彭涛, 闫凤利, 高亭. 基于自发参量下转换源二阶激发过程产生四光子超纠缠态. 物理学报, 2018, 67(6): 060302. doi: 10.7498/aps.67.20172230
    [15] 胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍. 基于条件参量下转换光子对的非正交编码诱惑态量子密钥分发. 物理学报, 2010, 59(1): 287-292. doi: 10.7498/aps.59.287
    [16] 胡要花. 运动原子多光子J-C模型中的熵交换与纠缠. 物理学报, 2012, 61(12): 120302. doi: 10.7498/aps.61.120302
    [17] 谭华堂, 甘仲惟, 李高翔. 与压缩真空库耦合的单模腔内三量子点中激子纠缠. 物理学报, 2005, 54(3): 1178-1183. doi: 10.7498/aps.54.1178
    [18] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干. 物理学报, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
    [19] 何林生, 冯勋立. 两能级原子在压缩真空态光场中双光子过程的细致平衡和熵的演化. 物理学报, 1997, 46(10): 1926-1931. doi: 10.7498/aps.46.1926
    [20] 彭金生, 胡响明. 双模双光子关联发射激光的稳态特性及其量子噪声压缩特性. 物理学报, 1997, 46(2): 255-266. doi: 10.7498/aps.46.255
  • 引用本文:
    Citation:
计量
  • 文章访问数:  542
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-29
  • 修回日期:  2016-02-17
  • 刊出日期:  2016-06-05

一种基于von Neumann熵的双路径纠缠量子微波信号生成质量评估方法

  • 1. 空军工程大学信息与导航学院, 西安 710077
  • 通信作者: 吴德伟, wudewei74609@126.com
    基金项目: 

    国家自然科学基金(批准号: 61573372)资助的课题.

摘要: 针对目前没有合适的方法从产生方来表征纠缠量子微波信号的质量好坏, 提出了一种基于von Neumann熵的双路径纠缠量子微波信号生成质量评估方法. 利用双模压缩真空态描述了纠缠量子微波的信号格式, 给出了光子数与压缩参量之间的函数关系, 以熵评估纠缠态信号所占比例, 分析了熵与压缩参量和光子数之间的关系. 仿真结果表明, 纠缠量子微波信号中的光子数是由压缩参量决定的, 它们之间呈指数平方的规律性变化; 熵随着压缩参量的增大而减小, 但是减小的趋势越来越平缓, 近似呈负指数关系, 熵的极限值约为65%. 研究结果表明, 通过选择合适的压缩参量可以提高纠缠微波信号生成质量以满足实际需要, 因此, 本研究对于生成双路径纠缠量子微波电路参数选择、提高系统可用性提供了方法和依据.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回