搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用啁啾脉冲光谱滤波和非线性偏振旋转技术实现高稳定性和开机自启动的全光纤掺Yb3+光纤锁模激光器

张攀政 汪小超 李菁辉 冯滔 张志祥 范薇 周申蕾 马伟新 朱俭 林尊琪

利用啁啾脉冲光谱滤波和非线性偏振旋转技术实现高稳定性和开机自启动的全光纤掺Yb3+光纤锁模激光器

张攀政, 汪小超, 李菁辉, 冯滔, 张志祥, 范薇, 周申蕾, 马伟新, 朱俭, 林尊琪
PDF
导出引用
导出核心图
  • 建立理论模型,讨论了非线性偏振旋转全光纤锁模激光器的锁模过程、谐波过程以及导致激光器锁模运行难以稳定的影响因素.讨论了采用啁啾脉冲光谱滤波产生脉冲自振幅调制、增加激光器锁模稳定性和自启动能力的机理以及非线性偏振旋转与啁啾脉冲光谱滤波相结合实现锁模的物理过程和脉冲演化过程.研制出全光纤结构的超短脉冲掺Yb3+光纤环形激光器,采用非线性偏振旋转和啁啾脉冲光谱滤波相结合的锁模技术,实现了激光器锁模的开机自启动和高稳定运行.对激光器进行了长期运行稳定性、锁模开机自启动能力、锁模输出参数可重复性监测.锁模脉冲中心波长1052.9 nm,谱宽9.1 nm,脉冲能量4.25 nJ,脉冲宽度17.8 ps.运行期间,各参数波动均小于0.3%.开机自启动能力和可重复性测试显示,激光器可实现一键自启动,启动后各参数可重复精度在0.55%以内.
      通信作者: 汪小超, smiles26@163.com
    • 基金项目: 中国科学院青年创新促进会项目和国家自然科学基金(批准号:61205103)资助的课题.
    [1]

    Dawson J W, Liao Z M, Jovanovic I, Wattellier B, Beach R, Payne S A, Barty C P J 2003 Proc. SPIE UCRL-JC-152561

    [2]

    Dawson J W, Liao Z M, Mitchell S, Messerly M, Beach R, Jovanovic I, Brown C, Payne S A, Barty C P J 2005 Proc. SPIE UCRL-CONF-209779

    [3]

    Yang L Z, Chen G F, Wang Y S, Zhao W, Ding G L, Xiong H J 2005 Chin. J. Lasers 32 153(in Chinese)[杨玲珍, 陈国夫, 王屹山, 赵卫, 丁广雷, 熊红军2005中国激光32 153]

    [4]

    Lin H H, Sui Z, Li M Z, Wang J J 2006 High Power Laser and Particle Beams 18 825(in Chinese)[林宏奂, 隋展, 李明中, 王建军2006强激光与粒子束18 825]

    [5]

    Gu Q Y, Hou J, Cheng X A, Xu X J 2008 Chin. J. Lasers 3 5(in Chinese)[谷庆元, 侯静, 程相爱, 许晓军2008中国激光3 5]

    [6]

    Zhang P Z, Fan W, Wang X C, Lin Z Q 2011 Chin. J. Lasers 8 3(in Chinese)[张攀政, 范薇, 汪小超, 林尊琪2011中国激光8 3]

    [7]

    Prochnow O, Ruehl A, Schultz M, Wandt D, Kracht D 2007 Opt. Express 15 6889

    [8]

    Kieu K, Wise F W 2008 Opt. Express 16 11453

    [9]

    Michael S, Heike K, Oliver P, Doeter W, Uwe M, Dietmar K 2008 Opt. Express 16 19562

    [10]

    Zhang P Z, Fan W, Wang X C, Lin Z Q 2010 Chin. Opt. Lett. 8 8

    [11]

    Zhang P Z, Fan W, Wang X C, Lin Z Q 2011 Acta Phys. Sin. 60 024206(in Chinese)[张攀政, 范薇, 汪小超, 林尊琪2011物理学报60 024206]

    [12]

    Luo Z C, Xu W C, Song C X, Luo A P, Chen W C 2009 Chin. Phys. B 18 1674

    [13]

    Bale B G, Kutz J N, Chong A, Renninger W H, Wise F W 2008 J. Opt. Soc. Am. B 25 1763

    [14]

    Ilday F Ö, Buckley J R, Lim H, Wise F W, Clark W G 2003 Opt. Lett. 28 1365

    [15]

    Komarov A, Leblond H, Sanchez F 2005 Phys. Rev. A 71 053809

    [16]

    Chong A, Buckley J, Renninger W, Wise F 2006 Opt. Express 14 10095

    [17]

    Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Elect. 33 1049

    [18]

    Buckley J, Chong A, Zhou S, Renninger W, Wise F W 2007 J. Opt. Soc. Am. B 24 1803

    [19]

    Agrawal G P(translated by Jia D F, Yu Z H, Tan B, Hu Z Y) 2002 Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics(Beijing:Publishing House of Electronics Industry) pp26-31, 64-71, 132-140(in Chinese)[Agrawal G P著(贾东方, 余震虹, 谈斌, 胡智勇译) 2002非线性光纤光学原理及应用(北京:电子工业出版社)第26–31, 64–71, 132–140页]

    [20]

    Wang Y H, Ma C S, Li D L, Zheng J 2008 Acta Opt. Sin. 37 855(in Chinese)[汪玉海, 马春生, 李德禄, 郑杰2008光学学报37 855]

    [21]

    Liu H G, Hu M L, Song Y J, Li Y F, Chai L, Wang C Y 2010 Chin. Phys. B 19 014215

    [22]

    Ilday F Ö, Buckley J R, Clark W G, Wise F W 2004 Phys. Rev. Lett. 92 213902

  • [1]

    Dawson J W, Liao Z M, Jovanovic I, Wattellier B, Beach R, Payne S A, Barty C P J 2003 Proc. SPIE UCRL-JC-152561

    [2]

    Dawson J W, Liao Z M, Mitchell S, Messerly M, Beach R, Jovanovic I, Brown C, Payne S A, Barty C P J 2005 Proc. SPIE UCRL-CONF-209779

    [3]

    Yang L Z, Chen G F, Wang Y S, Zhao W, Ding G L, Xiong H J 2005 Chin. J. Lasers 32 153(in Chinese)[杨玲珍, 陈国夫, 王屹山, 赵卫, 丁广雷, 熊红军2005中国激光32 153]

    [4]

    Lin H H, Sui Z, Li M Z, Wang J J 2006 High Power Laser and Particle Beams 18 825(in Chinese)[林宏奂, 隋展, 李明中, 王建军2006强激光与粒子束18 825]

    [5]

    Gu Q Y, Hou J, Cheng X A, Xu X J 2008 Chin. J. Lasers 3 5(in Chinese)[谷庆元, 侯静, 程相爱, 许晓军2008中国激光3 5]

    [6]

    Zhang P Z, Fan W, Wang X C, Lin Z Q 2011 Chin. J. Lasers 8 3(in Chinese)[张攀政, 范薇, 汪小超, 林尊琪2011中国激光8 3]

    [7]

    Prochnow O, Ruehl A, Schultz M, Wandt D, Kracht D 2007 Opt. Express 15 6889

    [8]

    Kieu K, Wise F W 2008 Opt. Express 16 11453

    [9]

    Michael S, Heike K, Oliver P, Doeter W, Uwe M, Dietmar K 2008 Opt. Express 16 19562

    [10]

    Zhang P Z, Fan W, Wang X C, Lin Z Q 2010 Chin. Opt. Lett. 8 8

    [11]

    Zhang P Z, Fan W, Wang X C, Lin Z Q 2011 Acta Phys. Sin. 60 024206(in Chinese)[张攀政, 范薇, 汪小超, 林尊琪2011物理学报60 024206]

    [12]

    Luo Z C, Xu W C, Song C X, Luo A P, Chen W C 2009 Chin. Phys. B 18 1674

    [13]

    Bale B G, Kutz J N, Chong A, Renninger W H, Wise F W 2008 J. Opt. Soc. Am. B 25 1763

    [14]

    Ilday F Ö, Buckley J R, Lim H, Wise F W, Clark W G 2003 Opt. Lett. 28 1365

    [15]

    Komarov A, Leblond H, Sanchez F 2005 Phys. Rev. A 71 053809

    [16]

    Chong A, Buckley J, Renninger W, Wise F 2006 Opt. Express 14 10095

    [17]

    Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Elect. 33 1049

    [18]

    Buckley J, Chong A, Zhou S, Renninger W, Wise F W 2007 J. Opt. Soc. Am. B 24 1803

    [19]

    Agrawal G P(translated by Jia D F, Yu Z H, Tan B, Hu Z Y) 2002 Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics(Beijing:Publishing House of Electronics Industry) pp26-31, 64-71, 132-140(in Chinese)[Agrawal G P著(贾东方, 余震虹, 谈斌, 胡智勇译) 2002非线性光纤光学原理及应用(北京:电子工业出版社)第26–31, 64–71, 132–140页]

    [20]

    Wang Y H, Ma C S, Li D L, Zheng J 2008 Acta Opt. Sin. 37 855(in Chinese)[汪玉海, 马春生, 李德禄, 郑杰2008光学学报37 855]

    [21]

    Liu H G, Hu M L, Song Y J, Li Y F, Chai L, Wang C Y 2010 Chin. Phys. B 19 014215

    [22]

    Ilday F Ö, Buckley J R, Clark W G, Wise F W 2004 Phys. Rev. Lett. 92 213902

  • [1] 张攀政, 范薇, 汪小超, 林尊琪. 利用光谱滤波器实现自启动的全光纤超短脉冲掺Yb3+光纤激光器. 物理学报, 2011, 60(2): 024206. doi: 10.7498/aps.60.024206
    [2] 石俊凯, 纪荣祎, 黎尧, 刘娅, 周维虎. 基于增益光纤长度优化的双波长运转掺铒光纤锁模激光器. 物理学报, 2017, 66(13): 134203. doi: 10.7498/aps.66.134203
    [3] 詹敏杰, 周斌斌, 张 炜, 魏志义. Gires-Tournois干涉镜补偿色散的自启动飞秒Cr4+:YAG激光器实验研究. 物理学报, 2008, 57(3): 1742-1745. doi: 10.7498/aps.57.1742
    [4] 朱亚东, 肖虎, 王小林, 马阎星, 周朴. 利用全光纤结构Michelson腔实现两路高功率双包层光纤激光器相干合成. 物理学报, 2012, 61(5): 054210. doi: 10.7498/aps.61.054210
    [5] 董小林, 肖虎, 马阎星, 周朴, 郭少锋. 高功率全光纤保偏主振荡功率放大型光纤激光器的实验研究. 物理学报, 2012, 61(6): 064207. doi: 10.7498/aps.61.064207
    [6] 李 欣, 胡元中, 王 慧, 陈 辉. 润滑膜全氟聚醚的稳定性. 物理学报, 2007, 56(7): 4094-4098. doi: 10.7498/aps.56.4094
    [7] 张希, 包伯成, 王金平, 马正华, 许建平. 固定关断时间控制Buck变换器输出电容等效串联电阻的稳定性分析. 物理学报, 2012, 61(16): 160503. doi: 10.7498/aps.61.160503
    [8] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算. 物理学报, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [9] 柴 路, 王清月, 曹士英, 张志刚. 钛宝石飞秒激光振荡器的稳定性改善. 物理学报, 2008, 57(5): 2971-2975. doi: 10.7498/aps.57.2971
    [10] 赵益波, 罗晓曙, 汪秉宏, 方锦清. 电压反馈型DC-DC变换器的稳定性研究. 物理学报, 2005, 54(11): 5022-5026. doi: 10.7498/aps.54.5022
    [11] 欧阳春梅, 柴路, 赵慧, 胡明列, 宋有建, 王清月. 滤波位置相关的全正色散掺Yb3+锁模光纤激光器的实验研究. 物理学报, 2010, 59(6): 3936-3941. doi: 10.7498/aps.59.3936
    [12] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 物理学报, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [13] 李进延, 陈 伟, 宋有建, 胡明列, 刘庆文, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [14] 王 岩, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华, 韩晓艳. 相变域硅薄膜材料的光稳定性. 物理学报, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [15] 易双萍, 王 慧, 欧阳玉, 彭景翠. 碳纳米管的稳定性研究. 物理学报, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [16] 王参军, 李江城, 梅冬成. 噪声对集合种群稳定性的影响. 物理学报, 2012, 61(12): 120506. doi: 10.7498/aps.61.120506
    [17] 张娟, 周志刚, 石玉仁, 杨红娟, 段文山. 修正KP方程及其孤波解的稳定性. 物理学报, 2012, 61(13): 130401. doi: 10.7498/aps.61.130401
    [18] 李秀平, 王善进, 陈琼, 罗诗裕. 参数激励与晶体摆动场辐射的稳定性. 物理学报, 2013, 62(22): 224102. doi: 10.7498/aps.62.224102
    [19] 王超, 刘骋远, 胡元萍, 刘志宏, 马建峰. 社交网络中信息传播的稳定性研究. 物理学报, 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [20] 欧阳世根, 江德生, 佘卫龙. 复色光伏孤子的稳定性. 物理学报, 2004, 53(9): 3033-3041. doi: 10.7498/aps.53.3033
  • 引用本文:
    Citation:
计量
  • 文章访问数:  408
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-04
  • 修回日期:  2016-07-02
  • 刊出日期:  2016-11-05

利用啁啾脉冲光谱滤波和非线性偏振旋转技术实现高稳定性和开机自启动的全光纤掺Yb3+光纤锁模激光器

  • 1. 中国科学院上海光学精密机械研究所, 中国科学院高功率激光物理重点实验室, 上海 201800;
  • 2. 中国工程物理研究院上海激光等离子体研究所, 上海 201800
  • 通信作者: 汪小超, smiles26@163.com
    基金项目: 

    中国科学院青年创新促进会项目和国家自然科学基金(批准号:61205103)资助的课题.

摘要: 建立理论模型,讨论了非线性偏振旋转全光纤锁模激光器的锁模过程、谐波过程以及导致激光器锁模运行难以稳定的影响因素.讨论了采用啁啾脉冲光谱滤波产生脉冲自振幅调制、增加激光器锁模稳定性和自启动能力的机理以及非线性偏振旋转与啁啾脉冲光谱滤波相结合实现锁模的物理过程和脉冲演化过程.研制出全光纤结构的超短脉冲掺Yb3+光纤环形激光器,采用非线性偏振旋转和啁啾脉冲光谱滤波相结合的锁模技术,实现了激光器锁模的开机自启动和高稳定运行.对激光器进行了长期运行稳定性、锁模开机自启动能力、锁模输出参数可重复性监测.锁模脉冲中心波长1052.9 nm,谱宽9.1 nm,脉冲能量4.25 nJ,脉冲宽度17.8 ps.运行期间,各参数波动均小于0.3%.开机自启动能力和可重复性测试显示,激光器可实现一键自启动,启动后各参数可重复精度在0.55%以内.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回