搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神经元模型对比分析

徐泠风 李传东 陈玲

神经元模型对比分析

徐泠风, 李传东, 陈玲
PDF
导出引用
导出核心图
  • 近年来,生物神经元模型的建立与应用已经获得了越来越多的关注,逐渐成为神经科学的一个重要分支.神经元模型不仅在仿生学、存储器设计、逻辑运算、信号处理等方面有重大应用,对分析研究神经系统的动力学特性也具有重要意义.本文总结了自1907年第一个神经元模型建立以来的发展历程,归纳出17种最具代表性的数学模型,分为电导依赖模型和非电导依赖模型进行比较分析,重点展示包括最新神经芯片TrueNorth上的神经元在内的5种经典模型,分析其仿真特性,以及电路实现的需求,方便研究者根据具体需求选择和改进神经元模型.
      通信作者: 李传东, licdswu@163.com
    • 基金项目: 国家自然科学基金(批准号:61374078,61503307)、重庆市基础与前沿技术研究项目(批准号:cstc2015jcyjBX0052,cstc2016jcyjA0261)、中央高校基本科研业务费专项资金(批准号:XDJK2015C079)和博士后科学基金(批准号:2016M590854)资助的课题.
    [1]

    Durstewitz D, Seamans J K, Sejnowski T J 2000 Nat. Neurosci. 3 1184

    [2]

    Cassidy A S, Merolla P, Arthur J V, Esser S K, Jackson B, Alvarez-Icaza R, Datta P, Sawada Jun, Wong T M, Feldman V, Amir A, Rubin D B, Akopyan F, McQuinn E, Risk W P, Modha D S 2013 The 2013 International Joint Conference on Neural Networks (IJCNN) Dallas, USA, August 4-9, 2013 p1

    [3]

    Smith G D, Cox C L, Sherman S M, Rinzel J 2000 J. Neurophysiol. 83 588

    [4]

    Fourcaud-Trocmé D, Hansel D, van Vreeswijk C, Brunel N 2003 J. Neurosci. 23 11628

    [5]

    Lapicque L 1907 J. Physiol. Pathol. Gen. 9 620

    [6]

    Abbott L F 1999 Brain Res. Bull. 50 303

    [7]

    Brunel N, van Rossum M C W 2007 Biol. Cybern. 97 337

    [8]

    McCulloch W S, Pitts W 1943 Bull. Math. Biol. 5 115

    [9]

    Bernstein J 1902 Pflgers Arch. 92 521

    [10]

    Hodgkin A L 1939 J. Physiol. 94 560

    [11]

    Hodgkin A L, Katz B 1949 J. Physiol. 108 37

    [12]

    Bonhoeffer K F 1948 J. Gen. Physiol. 32 69

    [13]

    Hodgkin A L 1948 J. Physiol. 107 165

    [14]

    Hebb D O 1949 The Organization of Behavior:A Neuropsychological Theory (1st Ed.) (London:Chapman & Hall) pp17-78

    [15]

    Hodgkin A L, Huxley A F, Katz B 1952 J. Physiol. 116 424

    [16]

    Eccles J C, Eccles R M, Lundberg A 1957 J. Physiol. 137 22

    [17]

    Rosenblatt F 1958 Psychol. Rev. 65 386

    [18]

    Fitzhugh R 1960 J. Gen. Physiol. 43 867

    [19]

    Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061

    [20]

    Fuortes M G F, Mantegazzini F 1962 J. Gen. Physiol. 45 1163

    [21]

    Stein R B 1965 Biophys. J. 5 173

    [22]

    Geisler C D, Goldberg J M 1966 Biophys. J. 6 53

    [23]

    Rall W 1967 J. Neurophysiol. 30 1138

    [24]

    Stein R B 1967 Proc. R. Soc. Lond. B:Biol. Sci. 167 64

    [25]

    Knight B W 1972 J. Gen. Physiol. 59 734

    [26]

    Kernell D, Sj·holm H 1973 Acta Physiol. Scand. 87 40

    [27]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [28]

    Shapiro B I, Lenherr F K 1972 Biophys. J. 12 1145

    [29]

    Krinskii V I, Iu M K 1973 Biofizika 18 506

    [30]

    Krinskii V I, Iu M K 1973 Biofizika 18 878

    [31]

    Plant R E, Kim M 1976 Biophys. J. 16 227

    [32]

    Plant R E 1976 Computer Programs Biomed. 6 85

    [33]

    Rinzel J 1978 Studies in Mathematical Biology (1st Ed.) (Washington:Mathematical association of America) pp1-66

    [34]

    Fitzhugh R 1961 Biophys. J. 1 445

    [35]

    Connor J A, Stevens C F 1971 J. Physiol. 213 31

    [36]

    Connor J A, Walter D, Mckown R 1977 Biophys. J. 18 81

    [37]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [38]

    Rinzel J, Troy W C 1982 J. Chem. Phys. 76 1775

    [39]

    Chay T R 1985 Physica D 16 233

    [40]

    Chay T R, Keizer J 1983 Biophys. J. 42 181

    [41]

    Ermentrout G B, Kopell N 1986 SIAM J. Appl. Math. 46 233

    [42]

    Hindmarsh J L, Rose R M 1982 Nature 296 162

    [43]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond. B:Biol. Sci. 221 87

    [44]

    Rose R M, Hindmarsh J L 1985 Proc. R. Soc. Lond. B:Biol. Sci. 225 161

    [45]

    Rose R M, Hindmarsh J L 1989 Proc. R. Soc. Lond. B:Biol. Sci. 237 267

    [46]

    Rose R M, Hindmarsh J L 1989 Proc. R. Soc. Lond. B:Biol. Sci. 237 289

    [47]

    Rose R M, Hindmarsh J L 1989 Proc. R. Soc. Lond. B:Biol. Sci. 237 313

    [48]

    Chay T R, Rinzel J 1985 Biophys. J. 47 357

    [49]

    Connor J A, Stevens C F 1971 J. Physiol. 213 1

    [50]

    Connor J A, Stevens C F 1971 J. Physiol. 213 21

    [51]

    Connor J 1975 J. Neurophysiol. 38 922

    [52]

    Jack J J B, Noble D, Tsien R W 1975 Electric Current Flow in Excitable Cells (1st Ed.) (Oxford:Clarendon Press) pp132-224

    [53]

    Connors B W, Gutnick M J, Prince D A 1982 J. Neurophysiol. 48 1302

    [54]

    Plant R E 1978 Biophys. J. 21 217

    [55]

    Rinzel J 1985 Ordinary and Partial Differential Equations (1st Ed.) (Berlin:Springer-Verlag) pp304-316

    [56]

    Rinzel J 1985 Fed. Proc. 44 2944

    [57]

    Mircea S, Jones E G, Llinás R R 1990 Thalamic Oscillations and Signaling (1st Ed.) (New York:John Wiley) pp1-43

    [58]

    Rinzel J 1987 Mathematical Topics in Population Biology, Morphogenesis and Neurosciences (1st Ed.) (Berlin:Springer) pp267-281

    [59]

    Connors B W, Gutnick M J 1990 Trends Neurosci. 13 99

    [60]

    Rall W 1989 Methods in Neuronal Modeling:from Ions to Networks (2nd Ed.) (Cambridge:MIT Press) pp9-62

    [61]

    Ermentrout B 1996 Neural Comput. 8 979

    [62]

    Hoppensteadt F C, Izhikevich E M 1997 Weakly Connected Neural Networks (1st Ed.) (New York:Springer-Verlag) pp25-101

    [63]

    Rinzel J, Ermentrout G B 1989 Methods in Neuronal Modeling (1st Ed.) (Cambridge:MIT Press) pp135-169

    [64]

    Roth A, Häusser M 2001 J. Physiol. 535 445

    [65]

    Chay T R 1991 Biopolymers 31 1483

    [66]

    Stevens C F, Zador A M 1998 Proceedings of 5th Joint Symposium on Neural Computation San Diego, USA, May 16, 1998 p172

    [67]

    Wilson H R 1999 J. Theor. Biol. 200 375

    [68]

    Izhikevich E M 1999 IEEE Trans. Neural Netw. 10 499

    [69]

    Izhikevich E M 2001 SIAM Rev. 43 315

    [70]

    Izhikevich E M, Hoppensteadt F 2004 Int. J. Bifurcat. Chaos 14 3847

    [71]

    Abbott L F, van Vreeswijk C 1993 Phys. Rev. E 48 1483

    [72]

    Destexhe A, Rudolph M, Pare D 2003 Nat. Rev. Neurosci. 4 739

    [73]

    Avoli M, Hwa G G, Lacaille J C, Olivier A, Villemure J G 1994 Exp. Brain Res. 98 135

    [74]

    Hutcheon B, Miura R M, Puil E 1996 J. Neurophysiol. 76 683

    [75]

    Mainen Z F, Sejnowski T J 1996 Nature 382 363

    [76]

    Bower J M, Beeman D 1998 The Book of Genesis (1st Ed.) (New York:Springer) pp51-130

    [77]

    Destexhe A, Mainen Z F, Sejnowski T J 1994 J. Comput. Neurosci. 1 195

    [78]

    Hutcheon B, Yarom Y 2000 Trends Neurosci. 23 216

    [79]

    Latham P E, Richmond B J, Nelson P G, Nirenberg S 2000 J. Neurophysiol. 83 808

    [80]

    Pike F G, Goddard R S, Suckling J M, Ganter P, Kasthuri N, Paulsen O 2000 J. Physiol. 529 205

    [81]

    Hansel D, Mato G 2001 Phys. Rev. Lett. 86 4175

    [82]

    Izhikevich E M 2004 IEEE Trans. Neural Netw. 15 1063

    [83]

    Segev I, Fleshman J W, Burke R E 1989 Methods in Neuronal Modeling (1st Ed.) (Cambridge:MIT Press) pp63-96

    [84]

    Pinsky P F, Rinzel J 1994 J. Comput. Neurosci. 1 39

    [85]

    Wang X J, Buzsáki G 1996 J. Neurosci. 16 6402

    [86]

    Hutcheon B, Miura R M, Puil E 1996 J. Neurophysiol. 76 698

    [87]

    Manor Y, Rinzel J, Segev I, Yarom Y 1997 J. Neurophysiol. 77 2736

    [88]

    Koch C, Segev I 1998 Methods in Neuronal Modeling:From Ions to Networks (2nd Ed.) (Cambridge:MIT Press) pp93-136

    [89]

    Feng J, Brown D 2000 Bull. Math. Biol. 62 467

    [90]

    Feng J 2001 Neural Netw. 14 955

    [91]

    Kistler W M, Gerstner W, van Hemmen J L 1997 Neural Comput. 9 1015

    [92]

    Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171

    [93]

    Izhikevich E M 2001 Neural Netw. 14 883

    [94]

    Gerstner W, Kistler W M 2002 Spiking Neuron Models:Single Neurons, Populations, Plasticity (1st Ed.) (Cambridge:Cambridge University Press) pp31-146

    [95]

    Izhikevich E M 2003 IEEE Trans. Neural Netw. 14 1569

    [96]

    Jolivet R, Lewis T J, Gerstner W 2004 J. Neurophysiol. 92 959

    [97]

    Brette R, Gerstner W 2005 J. Neurophysiol. 94 3637

    [98]

    Mihalas S, Niebur E 2009 Neural Comput. 21 704

    [99]

    McCormick D A, Wang Z, Huguenard J 1993 Cereb. Cortex 3 387

    [100]

    Lumer E D 1998 Cereb. Cortex 8 553

    [101]

    Yang Z Q 2010 Acta Phys. Sin. 59 5319 (in Chinese)[杨卓琴2010物理学报 59 5319]

    [102]

    Liang X B, Liu X S, Liu A Z, Wang B L 2009 Acta Phys. Sin. 58 5065 (in Chinese)[梁晓冰, 刘希顺, 刘安芝, 王博亮2009物理学报 58 5065]

    [103]

    Wang H Q, Yu L C, Chen Y 2009 Acta Phys. Sin. 58 5070 (in Chinese)[王慧巧, 俞连春, 陈勇2009物理学报 58 5070]

  • [1]

    Durstewitz D, Seamans J K, Sejnowski T J 2000 Nat. Neurosci. 3 1184

    [2]

    Cassidy A S, Merolla P, Arthur J V, Esser S K, Jackson B, Alvarez-Icaza R, Datta P, Sawada Jun, Wong T M, Feldman V, Amir A, Rubin D B, Akopyan F, McQuinn E, Risk W P, Modha D S 2013 The 2013 International Joint Conference on Neural Networks (IJCNN) Dallas, USA, August 4-9, 2013 p1

    [3]

    Smith G D, Cox C L, Sherman S M, Rinzel J 2000 J. Neurophysiol. 83 588

    [4]

    Fourcaud-Trocmé D, Hansel D, van Vreeswijk C, Brunel N 2003 J. Neurosci. 23 11628

    [5]

    Lapicque L 1907 J. Physiol. Pathol. Gen. 9 620

    [6]

    Abbott L F 1999 Brain Res. Bull. 50 303

    [7]

    Brunel N, van Rossum M C W 2007 Biol. Cybern. 97 337

    [8]

    McCulloch W S, Pitts W 1943 Bull. Math. Biol. 5 115

    [9]

    Bernstein J 1902 Pflgers Arch. 92 521

    [10]

    Hodgkin A L 1939 J. Physiol. 94 560

    [11]

    Hodgkin A L, Katz B 1949 J. Physiol. 108 37

    [12]

    Bonhoeffer K F 1948 J. Gen. Physiol. 32 69

    [13]

    Hodgkin A L 1948 J. Physiol. 107 165

    [14]

    Hebb D O 1949 The Organization of Behavior:A Neuropsychological Theory (1st Ed.) (London:Chapman & Hall) pp17-78

    [15]

    Hodgkin A L, Huxley A F, Katz B 1952 J. Physiol. 116 424

    [16]

    Eccles J C, Eccles R M, Lundberg A 1957 J. Physiol. 137 22

    [17]

    Rosenblatt F 1958 Psychol. Rev. 65 386

    [18]

    Fitzhugh R 1960 J. Gen. Physiol. 43 867

    [19]

    Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061

    [20]

    Fuortes M G F, Mantegazzini F 1962 J. Gen. Physiol. 45 1163

    [21]

    Stein R B 1965 Biophys. J. 5 173

    [22]

    Geisler C D, Goldberg J M 1966 Biophys. J. 6 53

    [23]

    Rall W 1967 J. Neurophysiol. 30 1138

    [24]

    Stein R B 1967 Proc. R. Soc. Lond. B:Biol. Sci. 167 64

    [25]

    Knight B W 1972 J. Gen. Physiol. 59 734

    [26]

    Kernell D, Sj·holm H 1973 Acta Physiol. Scand. 87 40

    [27]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [28]

    Shapiro B I, Lenherr F K 1972 Biophys. J. 12 1145

    [29]

    Krinskii V I, Iu M K 1973 Biofizika 18 506

    [30]

    Krinskii V I, Iu M K 1973 Biofizika 18 878

    [31]

    Plant R E, Kim M 1976 Biophys. J. 16 227

    [32]

    Plant R E 1976 Computer Programs Biomed. 6 85

    [33]

    Rinzel J 1978 Studies in Mathematical Biology (1st Ed.) (Washington:Mathematical association of America) pp1-66

    [34]

    Fitzhugh R 1961 Biophys. J. 1 445

    [35]

    Connor J A, Stevens C F 1971 J. Physiol. 213 31

    [36]

    Connor J A, Walter D, Mckown R 1977 Biophys. J. 18 81

    [37]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [38]

    Rinzel J, Troy W C 1982 J. Chem. Phys. 76 1775

    [39]

    Chay T R 1985 Physica D 16 233

    [40]

    Chay T R, Keizer J 1983 Biophys. J. 42 181

    [41]

    Ermentrout G B, Kopell N 1986 SIAM J. Appl. Math. 46 233

    [42]

    Hindmarsh J L, Rose R M 1982 Nature 296 162

    [43]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. Lond. B:Biol. Sci. 221 87

    [44]

    Rose R M, Hindmarsh J L 1985 Proc. R. Soc. Lond. B:Biol. Sci. 225 161

    [45]

    Rose R M, Hindmarsh J L 1989 Proc. R. Soc. Lond. B:Biol. Sci. 237 267

    [46]

    Rose R M, Hindmarsh J L 1989 Proc. R. Soc. Lond. B:Biol. Sci. 237 289

    [47]

    Rose R M, Hindmarsh J L 1989 Proc. R. Soc. Lond. B:Biol. Sci. 237 313

    [48]

    Chay T R, Rinzel J 1985 Biophys. J. 47 357

    [49]

    Connor J A, Stevens C F 1971 J. Physiol. 213 1

    [50]

    Connor J A, Stevens C F 1971 J. Physiol. 213 21

    [51]

    Connor J 1975 J. Neurophysiol. 38 922

    [52]

    Jack J J B, Noble D, Tsien R W 1975 Electric Current Flow in Excitable Cells (1st Ed.) (Oxford:Clarendon Press) pp132-224

    [53]

    Connors B W, Gutnick M J, Prince D A 1982 J. Neurophysiol. 48 1302

    [54]

    Plant R E 1978 Biophys. J. 21 217

    [55]

    Rinzel J 1985 Ordinary and Partial Differential Equations (1st Ed.) (Berlin:Springer-Verlag) pp304-316

    [56]

    Rinzel J 1985 Fed. Proc. 44 2944

    [57]

    Mircea S, Jones E G, Llinás R R 1990 Thalamic Oscillations and Signaling (1st Ed.) (New York:John Wiley) pp1-43

    [58]

    Rinzel J 1987 Mathematical Topics in Population Biology, Morphogenesis and Neurosciences (1st Ed.) (Berlin:Springer) pp267-281

    [59]

    Connors B W, Gutnick M J 1990 Trends Neurosci. 13 99

    [60]

    Rall W 1989 Methods in Neuronal Modeling:from Ions to Networks (2nd Ed.) (Cambridge:MIT Press) pp9-62

    [61]

    Ermentrout B 1996 Neural Comput. 8 979

    [62]

    Hoppensteadt F C, Izhikevich E M 1997 Weakly Connected Neural Networks (1st Ed.) (New York:Springer-Verlag) pp25-101

    [63]

    Rinzel J, Ermentrout G B 1989 Methods in Neuronal Modeling (1st Ed.) (Cambridge:MIT Press) pp135-169

    [64]

    Roth A, Häusser M 2001 J. Physiol. 535 445

    [65]

    Chay T R 1991 Biopolymers 31 1483

    [66]

    Stevens C F, Zador A M 1998 Proceedings of 5th Joint Symposium on Neural Computation San Diego, USA, May 16, 1998 p172

    [67]

    Wilson H R 1999 J. Theor. Biol. 200 375

    [68]

    Izhikevich E M 1999 IEEE Trans. Neural Netw. 10 499

    [69]

    Izhikevich E M 2001 SIAM Rev. 43 315

    [70]

    Izhikevich E M, Hoppensteadt F 2004 Int. J. Bifurcat. Chaos 14 3847

    [71]

    Abbott L F, van Vreeswijk C 1993 Phys. Rev. E 48 1483

    [72]

    Destexhe A, Rudolph M, Pare D 2003 Nat. Rev. Neurosci. 4 739

    [73]

    Avoli M, Hwa G G, Lacaille J C, Olivier A, Villemure J G 1994 Exp. Brain Res. 98 135

    [74]

    Hutcheon B, Miura R M, Puil E 1996 J. Neurophysiol. 76 683

    [75]

    Mainen Z F, Sejnowski T J 1996 Nature 382 363

    [76]

    Bower J M, Beeman D 1998 The Book of Genesis (1st Ed.) (New York:Springer) pp51-130

    [77]

    Destexhe A, Mainen Z F, Sejnowski T J 1994 J. Comput. Neurosci. 1 195

    [78]

    Hutcheon B, Yarom Y 2000 Trends Neurosci. 23 216

    [79]

    Latham P E, Richmond B J, Nelson P G, Nirenberg S 2000 J. Neurophysiol. 83 808

    [80]

    Pike F G, Goddard R S, Suckling J M, Ganter P, Kasthuri N, Paulsen O 2000 J. Physiol. 529 205

    [81]

    Hansel D, Mato G 2001 Phys. Rev. Lett. 86 4175

    [82]

    Izhikevich E M 2004 IEEE Trans. Neural Netw. 15 1063

    [83]

    Segev I, Fleshman J W, Burke R E 1989 Methods in Neuronal Modeling (1st Ed.) (Cambridge:MIT Press) pp63-96

    [84]

    Pinsky P F, Rinzel J 1994 J. Comput. Neurosci. 1 39

    [85]

    Wang X J, Buzsáki G 1996 J. Neurosci. 16 6402

    [86]

    Hutcheon B, Miura R M, Puil E 1996 J. Neurophysiol. 76 698

    [87]

    Manor Y, Rinzel J, Segev I, Yarom Y 1997 J. Neurophysiol. 77 2736

    [88]

    Koch C, Segev I 1998 Methods in Neuronal Modeling:From Ions to Networks (2nd Ed.) (Cambridge:MIT Press) pp93-136

    [89]

    Feng J, Brown D 2000 Bull. Math. Biol. 62 467

    [90]

    Feng J 2001 Neural Netw. 14 955

    [91]

    Kistler W M, Gerstner W, van Hemmen J L 1997 Neural Comput. 9 1015

    [92]

    Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171

    [93]

    Izhikevich E M 2001 Neural Netw. 14 883

    [94]

    Gerstner W, Kistler W M 2002 Spiking Neuron Models:Single Neurons, Populations, Plasticity (1st Ed.) (Cambridge:Cambridge University Press) pp31-146

    [95]

    Izhikevich E M 2003 IEEE Trans. Neural Netw. 14 1569

    [96]

    Jolivet R, Lewis T J, Gerstner W 2004 J. Neurophysiol. 92 959

    [97]

    Brette R, Gerstner W 2005 J. Neurophysiol. 94 3637

    [98]

    Mihalas S, Niebur E 2009 Neural Comput. 21 704

    [99]

    McCormick D A, Wang Z, Huguenard J 1993 Cereb. Cortex 3 387

    [100]

    Lumer E D 1998 Cereb. Cortex 8 553

    [101]

    Yang Z Q 2010 Acta Phys. Sin. 59 5319 (in Chinese)[杨卓琴2010物理学报 59 5319]

    [102]

    Liang X B, Liu X S, Liu A Z, Wang B L 2009 Acta Phys. Sin. 58 5065 (in Chinese)[梁晓冰, 刘希顺, 刘安芝, 王博亮2009物理学报 58 5065]

    [103]

    Wang H Q, Yu L C, Chen Y 2009 Acta Phys. Sin. 58 5070 (in Chinese)[王慧巧, 俞连春, 陈勇2009物理学报 58 5070]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2114
  • PDF下载量:  1050
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-23
  • 修回日期:  2016-08-30
  • 刊出日期:  2016-12-05

神经元模型对比分析

  • 1. 西南大学电子信息工程学院, 重庆 400715;
  • 2. 中国科学技术大学信息科学技术学院, 合肥 230027
  • 通信作者: 李传东, licdswu@163.com
    基金项目: 

    国家自然科学基金(批准号:61374078,61503307)、重庆市基础与前沿技术研究项目(批准号:cstc2015jcyjBX0052,cstc2016jcyjA0261)、中央高校基本科研业务费专项资金(批准号:XDJK2015C079)和博士后科学基金(批准号:2016M590854)资助的课题.

摘要: 近年来,生物神经元模型的建立与应用已经获得了越来越多的关注,逐渐成为神经科学的一个重要分支.神经元模型不仅在仿生学、存储器设计、逻辑运算、信号处理等方面有重大应用,对分析研究神经系统的动力学特性也具有重要意义.本文总结了自1907年第一个神经元模型建立以来的发展历程,归纳出17种最具代表性的数学模型,分为电导依赖模型和非电导依赖模型进行比较分析,重点展示包括最新神经芯片TrueNorth上的神经元在内的5种经典模型,分析其仿真特性,以及电路实现的需求,方便研究者根据具体需求选择和改进神经元模型.

English Abstract

参考文献 (103)

目录

    /

    返回文章
    返回