搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N/B掺杂石墨烯的光学与电学性质

禹忠 党忠 柯熙政 崔真

N/B掺杂石墨烯的光学与电学性质

禹忠, 党忠, 柯熙政, 崔真
PDF
导出引用
导出核心图
  • 石墨烯因其独特的化学成键结构而拥有出色的化学、热学、机械、电学、光学特性.由于石墨烯为零带隙材料,限制了其在纳电子学领域的发展.因此,为了拓宽石墨烯的应用范围,研究打开石墨烯带隙的方法显得尤为重要.本文构建了本征石墨烯、N掺杂石墨烯、B掺杂石墨烯三种模型,研究了本征石墨烯和不同掺杂浓度下的N/B掺杂石墨烯的能带结构、电子态密度及光学与电学性质,包括吸收谱、反射谱、折射率、电导率和介电函数等.研究结果显示:1)本征石墨烯费米能级附近的电子态主要是由C-2p轨道形成,而N/B掺杂石墨烯费米能级附近的电子态主要是由C-2p和N-2p/B-2p轨道杂化形成;2)N/B掺杂可以引起石墨烯费米能级、光学与电学性质的改变,且使狄拉克锥消失,进而打开石墨烯带隙;3)N/B掺杂可以引起石墨烯光学和电学性质的变化,且对吸收谱、反射谱、折射率、介电函数影响较大,而对电导率影响较小.本文的结论可为石墨烯在光电子器件中的应用提供理论依据.
      通信作者: 党忠, dangzhongyue@163.com
    • 基金项目: 国家自然科学基金(批准号:61377080,60977054)资助的课题.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Andrei K G, Konstantin S N 2007 Nat. Mater. 6 183

    [3]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [4]

    Jin Q, Dong H M, Han K, Wang X F 2015 Acta Phys. Sin. 64 237801 (in Chinese)[金芹, 董海明, 韩奎, 王雪峰2015物理学报 64 237801]

    [5]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749

    [6]

    Dragoman M, Neculoiu D, Dragoman D, Deligeorgis G, Konstantinidis G, Cismaru A, Coccetti F, Plana R 2010 IEEE Microw. Mag. 11 81

    [7]

    Wang X F, Chakraborty T 2007 Phys. Rev. B 75 033408

    [8]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese)[冯伟, 张戎, 曹俊诚2015物理学报 64 229501]

    [9]

    Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H 2010 Acs Nano 4 1790

    [10]

    Chang H X, Wu H K 2013 Adv. Funct. Mater. 23 1984

    [11]

    Long M S, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, L Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254

    [12]

    Miao J S, Hu W D, Guo N, Lu Z Y, Liu X Q, Liao L, Chen P P, Jiang T, Wu S W, Ho J C, Wang L, Chen X H, Lu W 2015 Small 11 936

    [13]

    Wang H B, Zhang C J, Liu Z H, Wang L, Han P X, Xu H X, Zhang K J, Dong S M, Yao J H, Cui G L 2011 J. Mater. Chem. 21 5430

    [14]

    Zhou X, Chen J, Gu L, Miao L 2015 Chin. Phys. Lett. 32 026102

    [15]

    Schwierz F 2013 Proc. IEEE 101 1567

    [16]

    Rana F 2008 IEEE Trans. Nanotechnol. 7 91

    [17]

    Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435

    [18]

    Hwang E H, Sarma S D, Otsuji T 2007 Phys. Rev. B 75 205418

    [19]

    Ryzhii V 2006 Jpn. J. Appl. Phys. 45 923

    [20]

    Ristein J 2006 Science 313 1057

    [21]

    Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151

    [22]

    Cordero N A, Alonso J A 2007 Nanotechnology 18 485705

    [23]

    Tsetseris L, Pantelides S T 2012 Phys. Rev. B 85 155446

    [24]

    Oh J S, Kim K N, Yeom G Y 2014 J. Nanosci. Nanotechnol. 14 1120

    [25]

    Cai P, Wang H P, Yu G 2016 Prog. Phys. 36 121(in Chinese)[蔡乐, 王华平, 于贵2016物理学进展 36 121]

    [26]

    Leenaerts O, Partoens B, Peeters F M 2009 Phys. Rev. B 79 235440

    [27]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P B, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [28]

    Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842

    [29]

    Dong X C, Fu D L, Fang W J, Shi Y M, Chen P, Li L J 2009 Small 5 1422

    [30]

    Liu H T, Liu Y Q, Zhu D B 2011 Mater. Chem. 21 3335

    [31]

    Goharshadi E K, Mahdizadeh S J 2015 J. Mol. Graph. Model. 62 74

    [32]

    Rybin M, Pereyaslavtsev A, Vasilieva T, Myasnikov V, Sokolov I, Pavlova A, Obraztsova E, Khomich A, Ralchenko V, Obraztsova E 2016 Carbon 96 196

    [33]

    Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R 2009 Adv. Mater. 21 4726

    [34]

    Niu L Y, Li Z P, Hong W, Sun J F, Wang Z F, Ma L M, Wang J Q, Yang S R 2013 Electrochim. Acta 108 666

    [35]

    Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H 2012 Mater. Chem. 22 390

    [36]

    Lin Y C, Lin C Y, Chiu P W 2010 Appl. Phys. Lett. 96 133110

    [37]

    Wang X R, Li X, Zhang L, Yoon Y, Weber P K, Wang H L, Guo J, Dai H J 2009 Science 324 768

    [38]

    Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys 81 109

    [39]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese)[尹伟红, 韩琴, 杨晓红2012物理学报 61 248502]

    [40]

    Mariani E, Glazman L I, Kamenev A, Oppen F 2007 Phys. Rev. B 76 165402

    [41]

    Gmitra M, Konschuh S, Ertler C, Ambrosch D C, Fabian J 2009 Phys. Rev. B 80 235431

    [42]

    Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842

    [43]

    Zhao C J 2011 M. S. Thesis (Xian:Xidian University) (in Chinese)[赵朝军2011硕士学位论文(西安:西安电子科技大学)]

    [44]

    Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G 2009 Nano Lett. 9 1752

    [45]

    Du S J 2012 M. S. Thesis (Chongqing:Chongqing University) (in Chinese)[杜声玖2012硕士学位论文(重庆:重庆大学)]

    [46]

    Ehrenreich H, Cohen M H 1959 Phys. Rev. 115 786

    [47]

    Toll J S 1956 Phys. Rev. 104 1760

    [48]

    Fox A M 2001 Optical Properties of Solids 3(Oxford:Oxford University Press) pp9-92

    [49]

    Katsnelson M 2007 Mater. Today 10 20

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Andrei K G, Konstantin S N 2007 Nat. Mater. 6 183

    [3]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [4]

    Jin Q, Dong H M, Han K, Wang X F 2015 Acta Phys. Sin. 64 237801 (in Chinese)[金芹, 董海明, 韩奎, 王雪峰2015物理学报 64 237801]

    [5]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749

    [6]

    Dragoman M, Neculoiu D, Dragoman D, Deligeorgis G, Konstantinidis G, Cismaru A, Coccetti F, Plana R 2010 IEEE Microw. Mag. 11 81

    [7]

    Wang X F, Chakraborty T 2007 Phys. Rev. B 75 033408

    [8]

    Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese)[冯伟, 张戎, 曹俊诚2015物理学报 64 229501]

    [9]

    Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H 2010 Acs Nano 4 1790

    [10]

    Chang H X, Wu H K 2013 Adv. Funct. Mater. 23 1984

    [11]

    Long M S, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, L Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254

    [12]

    Miao J S, Hu W D, Guo N, Lu Z Y, Liu X Q, Liao L, Chen P P, Jiang T, Wu S W, Ho J C, Wang L, Chen X H, Lu W 2015 Small 11 936

    [13]

    Wang H B, Zhang C J, Liu Z H, Wang L, Han P X, Xu H X, Zhang K J, Dong S M, Yao J H, Cui G L 2011 J. Mater. Chem. 21 5430

    [14]

    Zhou X, Chen J, Gu L, Miao L 2015 Chin. Phys. Lett. 32 026102

    [15]

    Schwierz F 2013 Proc. IEEE 101 1567

    [16]

    Rana F 2008 IEEE Trans. Nanotechnol. 7 91

    [17]

    Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435

    [18]

    Hwang E H, Sarma S D, Otsuji T 2007 Phys. Rev. B 75 205418

    [19]

    Ryzhii V 2006 Jpn. J. Appl. Phys. 45 923

    [20]

    Ristein J 2006 Science 313 1057

    [21]

    Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151

    [22]

    Cordero N A, Alonso J A 2007 Nanotechnology 18 485705

    [23]

    Tsetseris L, Pantelides S T 2012 Phys. Rev. B 85 155446

    [24]

    Oh J S, Kim K N, Yeom G Y 2014 J. Nanosci. Nanotechnol. 14 1120

    [25]

    Cai P, Wang H P, Yu G 2016 Prog. Phys. 36 121(in Chinese)[蔡乐, 王华平, 于贵2016物理学进展 36 121]

    [26]

    Leenaerts O, Partoens B, Peeters F M 2009 Phys. Rev. B 79 235440

    [27]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P B, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652

    [28]

    Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842

    [29]

    Dong X C, Fu D L, Fang W J, Shi Y M, Chen P, Li L J 2009 Small 5 1422

    [30]

    Liu H T, Liu Y Q, Zhu D B 2011 Mater. Chem. 21 3335

    [31]

    Goharshadi E K, Mahdizadeh S J 2015 J. Mol. Graph. Model. 62 74

    [32]

    Rybin M, Pereyaslavtsev A, Vasilieva T, Myasnikov V, Sokolov I, Pavlova A, Obraztsova E, Khomich A, Ralchenko V, Obraztsova E 2016 Carbon 96 196

    [33]

    Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R 2009 Adv. Mater. 21 4726

    [34]

    Niu L Y, Li Z P, Hong W, Sun J F, Wang Z F, Ma L M, Wang J Q, Yang S R 2013 Electrochim. Acta 108 666

    [35]

    Sheng Z H, Gao H L, Bao W J, Wang F B, Xia X H 2012 Mater. Chem. 22 390

    [36]

    Lin Y C, Lin C Y, Chiu P W 2010 Appl. Phys. Lett. 96 133110

    [37]

    Wang X R, Li X, Zhang L, Yoon Y, Weber P K, Wang H L, Guo J, Dai H J 2009 Science 324 768

    [38]

    Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys 81 109

    [39]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese)[尹伟红, 韩琴, 杨晓红2012物理学报 61 248502]

    [40]

    Mariani E, Glazman L I, Kamenev A, Oppen F 2007 Phys. Rev. B 76 165402

    [41]

    Gmitra M, Konschuh S, Ertler C, Ambrosch D C, Fabian J 2009 Phys. Rev. B 80 235431

    [42]

    Pinto H, Markevich A 2014 Beilstein J. Nanotechnol. 5 1842

    [43]

    Zhao C J 2011 M. S. Thesis (Xian:Xidian University) (in Chinese)[赵朝军2011硕士学位论文(西安:西安电子科技大学)]

    [44]

    Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G 2009 Nano Lett. 9 1752

    [45]

    Du S J 2012 M. S. Thesis (Chongqing:Chongqing University) (in Chinese)[杜声玖2012硕士学位论文(重庆:重庆大学)]

    [46]

    Ehrenreich H, Cohen M H 1959 Phys. Rev. 115 786

    [47]

    Toll J S 1956 Phys. Rev. 104 1760

    [48]

    Fox A M 2001 Optical Properties of Solids 3(Oxford:Oxford University Press) pp9-92

    [49]

    Katsnelson M 2007 Mater. Today 10 20

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1904
  • PDF下载量:  435
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-12
  • 修回日期:  2016-08-23
  • 刊出日期:  2016-12-05

N/B掺杂石墨烯的光学与电学性质

  • 1. 西安理工大学自动化与信息工程学院, 西安 710048
  • 通信作者: 党忠, dangzhongyue@163.com
    基金项目: 

    国家自然科学基金(批准号:61377080,60977054)资助的课题.

摘要: 石墨烯因其独特的化学成键结构而拥有出色的化学、热学、机械、电学、光学特性.由于石墨烯为零带隙材料,限制了其在纳电子学领域的发展.因此,为了拓宽石墨烯的应用范围,研究打开石墨烯带隙的方法显得尤为重要.本文构建了本征石墨烯、N掺杂石墨烯、B掺杂石墨烯三种模型,研究了本征石墨烯和不同掺杂浓度下的N/B掺杂石墨烯的能带结构、电子态密度及光学与电学性质,包括吸收谱、反射谱、折射率、电导率和介电函数等.研究结果显示:1)本征石墨烯费米能级附近的电子态主要是由C-2p轨道形成,而N/B掺杂石墨烯费米能级附近的电子态主要是由C-2p和N-2p/B-2p轨道杂化形成;2)N/B掺杂可以引起石墨烯费米能级、光学与电学性质的改变,且使狄拉克锥消失,进而打开石墨烯带隙;3)N/B掺杂可以引起石墨烯光学和电学性质的变化,且对吸收谱、反射谱、折射率、介电函数影响较大,而对电导率影响较小.本文的结论可为石墨烯在光电子器件中的应用提供理论依据.

English Abstract

参考文献 (49)

目录

    /

    返回文章
    返回