-
有机太阳能电池中的微腔模式可以在谐振波长附近增强光与物质的相互作用,提高有源层的光吸收,但是其内禀的窄带宽特性限制了器件的宽频谱吸收性能.本文提出一种模式杂化机制,通过在器件外部引入盖层,激发盖层内支持的抗反射谐振模式,使其与器件内在的微腔模式发生耦合作用,形成两个新的杂化模式.杂化模式可以拓宽模式谐振带宽,有利于增强太阳能电池的宽频谱光吸收.理论计算表明,通过设计杂化模式的谐振位置,基于模式杂化机制的平板器件的最优化总吸收率相比传统的微腔器件的最优化性能提高了37%,并同样优越于广泛研究的基于表面等离激元的光栅机制,这证明提出的模式杂化机制是一种简单高效的光束缚机制.
[1] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222
[2] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864
[3] You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446
[4] Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103 (in Chinese)[黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿2015物理学报 64 038103]
[5] Li Q, Li H Q, Zhao J, Huang J, Yu J S 2013 Acta Phys. Sin. 62 128803 (in Chinese)[李青, 李海强, 赵娟, 黄江, 于军胜2013物理学报 62 128803]
[6] Zhang X L, Song J F, Li X B, Feng J, Sun H B 2012 Appl. Phys. Lett. 101 243901
[7] Sefunc M A, Okyay A K, Demir H V 2011 Appl. Phys. Lett. 98 093117
[8] Zhang X L, Song J F, Feng J, Sun H B 2013 Opt. Lett. 38 4382
[9] Williamson A, McClean é, Leipold D, Zerulla D, Runge E 2011 Appl. Phys. Lett. 99 093307
[10] Lin H W, Chiu S W, Lin L Y, Huang Z Y, Chen Y H, Lin F, Wong K T 2012 Adv. Mater. 24 2269
[11] Sergeant N P, Hadipour A, Niesen B, Cheyns D, Heremans P, Peumans P, Rand B P 2012 Adv. Mater. 24 728
[12] Chen K S, Yip H L, Salinas J F, Xu Y X, Chueh C C, Jen A K Y 2014 Adv. Mater. 26 3349
[13] Kats M A, Blanchard R, Genevet P, Capasso F 2013 Nat. Mater. 12 20
[14] Zhang X L, Song J F, Li X B, Feng J, Sun H B 2013 Appl. Phys. Lett. 102 103901
[15] Kats M A, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2012 Appl. Phys. Lett. 101 221101
[16] Zhang X L, Feng J, Song J F, Li X B, Sun H B 2011 Opt. Lett. 36 3915
[17] Taflove A 1998 Advances in Computational Electrodynamics:The Finite-Difference Time-Domain Method (London:Artech House)
[18] Kena-Cohen S, Forrest S R 2010 Nat. Photon. 4 371
[19] Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2014 Appl. Phys. Lett. 105 191117
[20] Zhang X L, Feng J, Han X C, Liu Y F, Chen Q D, Song J F, Sun H B 2015 Optica 2 579
[21] Hao Y W, Wang H Y, Zhang Z Y, Zhang X L, Chen Q D, Sun H B 2013 J. Phys. Chem. C 117 26734
[22] Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2015 IEEE Photon. Technol. Lett. 27 821
[23] Zhang X L, Song J F, Li X B, Feng J, Sun H B 2013 Org. Electron. 14 1577
[24] Min C, Li J, Veronis G, Lee J Y, Fan S, Peumans P 2010 Appl. Phys. Lett. 96 133302
[25] Jin Y, Feng J, Zhang X L, Xu M, Bi Y G, Chen Q D, Wang H Y, Sun H B 2012 Appl. Phys. Lett. 101 163303
[26] Jin Y, Feng J, Xu M, Zhang X L, Wang L, Chen Q D, Wang H Y, Sun H B 2013 Adv. Opt. Mater. 1 809
[27] Bi Y G, Feng J, Chen Y, Liu Y S, Zhang X L, Li Y F, Xu M, Liu Y F, Han X C, Sun H B 2015 Org. Electron. 27 167
[28] Jin Y, Feng J, Zhang X L, Xu M, Chen Q D, Wu Z J, Sun H B 2015 Appl. Phys. Lett. 106 223303
-
[1] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222
[2] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864
[3] You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446
[4] Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103 (in Chinese)[黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿2015物理学报 64 038103]
[5] Li Q, Li H Q, Zhao J, Huang J, Yu J S 2013 Acta Phys. Sin. 62 128803 (in Chinese)[李青, 李海强, 赵娟, 黄江, 于军胜2013物理学报 62 128803]
[6] Zhang X L, Song J F, Li X B, Feng J, Sun H B 2012 Appl. Phys. Lett. 101 243901
[7] Sefunc M A, Okyay A K, Demir H V 2011 Appl. Phys. Lett. 98 093117
[8] Zhang X L, Song J F, Feng J, Sun H B 2013 Opt. Lett. 38 4382
[9] Williamson A, McClean é, Leipold D, Zerulla D, Runge E 2011 Appl. Phys. Lett. 99 093307
[10] Lin H W, Chiu S W, Lin L Y, Huang Z Y, Chen Y H, Lin F, Wong K T 2012 Adv. Mater. 24 2269
[11] Sergeant N P, Hadipour A, Niesen B, Cheyns D, Heremans P, Peumans P, Rand B P 2012 Adv. Mater. 24 728
[12] Chen K S, Yip H L, Salinas J F, Xu Y X, Chueh C C, Jen A K Y 2014 Adv. Mater. 26 3349
[13] Kats M A, Blanchard R, Genevet P, Capasso F 2013 Nat. Mater. 12 20
[14] Zhang X L, Song J F, Li X B, Feng J, Sun H B 2013 Appl. Phys. Lett. 102 103901
[15] Kats M A, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2012 Appl. Phys. Lett. 101 221101
[16] Zhang X L, Feng J, Song J F, Li X B, Sun H B 2011 Opt. Lett. 36 3915
[17] Taflove A 1998 Advances in Computational Electrodynamics:The Finite-Difference Time-Domain Method (London:Artech House)
[18] Kena-Cohen S, Forrest S R 2010 Nat. Photon. 4 371
[19] Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2014 Appl. Phys. Lett. 105 191117
[20] Zhang X L, Feng J, Han X C, Liu Y F, Chen Q D, Song J F, Sun H B 2015 Optica 2 579
[21] Hao Y W, Wang H Y, Zhang Z Y, Zhang X L, Chen Q D, Sun H B 2013 J. Phys. Chem. C 117 26734
[22] Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2015 IEEE Photon. Technol. Lett. 27 821
[23] Zhang X L, Song J F, Li X B, Feng J, Sun H B 2013 Org. Electron. 14 1577
[24] Min C, Li J, Veronis G, Lee J Y, Fan S, Peumans P 2010 Appl. Phys. Lett. 96 133302
[25] Jin Y, Feng J, Zhang X L, Xu M, Bi Y G, Chen Q D, Wang H Y, Sun H B 2012 Appl. Phys. Lett. 101 163303
[26] Jin Y, Feng J, Xu M, Zhang X L, Wang L, Chen Q D, Wang H Y, Sun H B 2013 Adv. Opt. Mater. 1 809
[27] Bi Y G, Feng J, Chen Y, Liu Y S, Zhang X L, Li Y F, Xu M, Liu Y F, Han X C, Sun H B 2015 Org. Electron. 27 167
[28] Jin Y, Feng J, Zhang X L, Xu M, Chen Q D, Wu Z J, Sun H B 2015 Appl. Phys. Lett. 106 223303
引用本文: |
Citation: |
计量
- 文章访问数: 1371
- PDF下载量: 173
- 被引次数: 0