搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于近场光学的微球超分辨显微效应

周锐 吴梦雪 沈飞 洪明辉

基于近场光学的微球超分辨显微效应

周锐, 吴梦雪, 沈飞, 洪明辉
PDF
导出引用
导出核心图
  • 在光学成像领域,由于受到衍射极限的限制,常规成像分辨率在200 nm左右.科学的不断进步对更高分辨率有着迫切需求,如何突破这个极限来获得更高质量的高分辨率图像是热门研究领域.2011年提出了微球超显微技术:在原有的光学系统中,将直径几微米至几十微米的透明微球直接置于样品表面,就能够成倍提高传统光学显微镜的成像能力.微球超显微技术以其简单直接的特点,受到广泛关注.本文介绍了光学显微镜的研究背景以及国内外团队在微球超分辨显微技术方面的研究进展,包括通过在微球表面进行环刻同心环、中心遮挡和表面涂覆的方法来调节微球所产生的光子纳米喷射方面所开展的一系列研究,并进行了理论模拟和实验验证,进一步提升了微球的超分辨显微效应.最后,展望了今后微球超分辨显微技术的应用与发展方向.
      通信作者: 周锐, rzhou2@xmu.edu.cn;elehmh@nus.edu.sg ; 洪明辉, rzhou2@xmu.edu.cn;elehmh@nus.edu.sg
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CBA01703)、国家自然科学基金(批准号:61605162)、福建省自然科学基金(批准号:2017J05106)、中国科学院光电技术研究所微细加工光学技术国家重点实验室开放课题(KFS4)和福建省高端装备制造协同创新中心资助的课题.
    [1]

    Abbe E 1873 Acchiv. Mikroskop. Anat. 9 413

    [2]

    von Helmholtz H 1874 Ann. Phys. Chem. 557

    [3]

    Stephenson J W 1877 Monthly. Microsc. J. 17 82

    [4]

    Francia G T D 1952 Suppl. Nuovo. Cim. 9 426

    [5]

    Hao X, Kuang C, Gu Z, Wang Y, Li S, Ku Y, Ge J, Liu X 2013 Light: Sci. Appl. 2 e108

    [6]

    Courjon D, Bainier C 1994 Rep. Prog. Phys. 57 989

    [7]

    Greffet J J, Carminati R 1997 Pro. Surf. Sci. 56 133

    [8]

    Nassenstein H 1970 Opt. Commun. 2 231

    [9]

    Ash E A, Nicholls G 1972 Nature 237 510

    [10]

    Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E 1986 Biophys. J. 49 269

    [11]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [12]

    Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2005 Opt. Lett. 30 3356

    [13]

    Li X, Yang L, Hu C, Luo X, Hong M 2011 Opt. Express 19 5283

    [14]

    Aydin K, Bulu I, Ozbay E 2007 Appl. Phys. Lett. 90 77

    [15]

    Tyc T, Zhang X 2011 Nature 480 42

    [16]

    Shalaev V M 2007 Nat. Photon 1 41

    [17]

    Liu Z, Fang N, Yen T J, Xiang Z 2003 Appl. Phys. Lett. 83 5184

    [18]

    Zhang X, Liu Z 2008 Nature Mater. 7 435

    [19]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [20]

    Jacob Z, Alekseyev L, Narimanov E 2006 Opt. Express 14 8247

    [21]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [22]

    Upputuri P K, Wen Z B, Wu Z, Pramanik M 2014 J. Biomed. Opt. 19 116003

    [23]

    Hell S W 2007 Science 316 1153

    [24]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [25]

    Klar T A, Hell S W 1999 Opt. Lett. 24 954

    [26]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincottschwartz J, Hess H F 2006 Science 313 1642

    [27]

    Bastiaens P I H, Squire A 1999 Trends. Cell. Biol. 9 48

    [28]

    Kenworthy A K 2001 Methods 24 289

    [29]

    Hein B, Willig K I, Hell S W 2008 Proc. Nat. Acad. Sci. 105 14271

    [30]

    Min W, Lu S, Chong S, Roy R, Holtom G R, Xie X S 2009 Nature 461 1105

    [31]

    Wang Z, Guo W, Li L, Luk'Yanchuk B, Khan A, Liu Z, Chen Z, Hong M 2011 Nat. Commun. 2 218

    [32]

    Darafsheh A, Limberopoulos N I, Derov J S, Walker Jr D E, Astratov V N 2014 Appl. Phys. Lett. 104 061117

    [33]

    Krivitsky L A, Jia J W, Wang Z, Luk'Yanchuk B 2013 Sci. Rep. 3 3501

    [34]

    Li L, Guo W, Yan Y, Lee S, Wang T 2013 Light-Sci. Appl. 2 72

    [35]

    Yang H, Moullan N, Auwerx J, Gijs M A 2014 Small 10 1712

    [36]

    Guo H, Han Y, Weng X, Zhao Y, Sui G, Wang Y, Zhuang S 2013 Opt. Express 21 2434

    [37]

    Lee S, Li L, Wang Z 2014 J. Opt. 16 015704

    [38]

    Allen K W, Farahi N, Li Y, Limberopoulos N I, Walker D E, Urbas A M, Liberman V, Astratov V N 2015 Ann. Phys. 527 513

    [39]

    Wang Y, Guo S, Wang D, Lin Q, Rong L, Zhao J 2016 Opt. Commun. 366 81

    [40]

    Lin Q, Wang D, Wang Y, Rong L, Zhao J, Guo S, Wang M 2016 Opt. Quantum Electron. 48 557

    [41]

    Yan B, Yue L, Wang Z 2016 Opt. Commun. 370 140

    [42]

    Wang S, Zhang D, Zhang H, Han X, Xu R 2015 Microsc. Res. Tech. 78 1128

    [43]

    Wu L, Zhu H, Yan B, Wang Z, Zhou S 2015 J. Mater. Chem. C 3 10907

    [44]

    Hao X, Kuang C, Li Y, Liu X, Ku Y, Jiang Y 2012 Opt. Commun. 285 4130

    [45]

    Lai H S S, Wang F, Li Y, Jia B, Liu L, Li W J 2016 PLoS One. 11 e0165194

    [46]

    Guo M, Ye Y H, Hou J, Du B 2016 Appl. Phys. B 122 65

    [47]

    Guo M, Ye Y H, Hou J, Du B 2015 Photon. Res. 3 339

    [48]

    Darafsheh A, Walsh G F, Dal Negro L, Astratov V N 2012 Appl. Phys. Lett. 101 14128

    [49]

    Wang T, Kuang C, Hao X, Liu X 2011 J. Opt. 13 035702

    [50]

    Lee S, Li L, Wang Z, Guo W, Yan Y, Wang T 2013 Appl. Opt. 52 7265

    [51]

    Yang H, Gijs M A M 2015 Microelectron. Eng. 143 86

    [52]

    Yao L, Ye Y H, Feng Ma H, Cao L, Hou J 2015 Opt. Commun. 335 23

    [53]

    Hao X, Kuang C, Liu X, Zhang H, Li Y 2011 Appl. Phys. Lett. 99 203102

    [54]

    Lee S, Li L, Benaryeh Y, Wang Z, Guo W 2013 J. Opt. 15 125710

    [55]

    Lee S, Li L 2015 Opt. Commun. 334 253

    [56]

    Lu Y F, Zhang L, Song W D, Zheng Y W, Luk'Yanchuk B S 2000 JETP Lett. 72 457

    [57]

    Chen Z, Taflove A, Backman V 2004 Opt. Express 12 1214

    [58]

    Yang H, Cornaglia M, Gijs M A M 2015 Nano Lett. 15 46

    [59]

    Wu M H, Whitesides G M 2001 Appl. Phys. Lett. 78 2273

    [60]

    Li X, Chen Z, Taflove A, Backman V 2005 Opt. Express 13 526

    [61]

    Ferrand P, Wenger J, Devilez A, Pianta M, Stout B, Bonod N, Popov E, Rigneault H 2008 Opt. Express 16 6930

    [62]

    Zhang Z, Geng C, Hao Z, Wei T, Yan Q 2016 Adv. Colloid Interface Sci. 228 105

    [63]

    Yan Y, Li L, Feng C, Guo W, Lee S, Hong M 2014 ACS Nano 8 1809

    [64]

    Gu G, Zhou R, Chen Z, Xu H, Cai G, Cai Z, Hong M 2015 Opt. Lett. 40 625

    [65]

    Kong S C, Taflove A, Backman V 2010 Opt. Express 17 3722

    [66]

    Zhu H, Chen Z, Chong T C, Hong M 2015 Opt. Express 23 6626

    [67]

    Houston W V 1927 Phys. Rev. 29 478

    [68]

    Wu M, Huang B, Chen R, Yang Y, Wu J, Ji R, Chen X, Hong M 2015 Opt. Express 23 20096

    [69]

    Wu M, Chen R, Soh J, Shen Y, Jiao L, Wu J, Chen X, Ji R, Hong M 2016 Sci. Rep. 6 31637

    [70]

    Durnin J, Miceli Jr J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [71]

    McGloin D, Dholakia K 2005 Contem. Phys. 46 15

    [72]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [73]

    Bennett, Harold E 1988 Laser Induced Damage in Optical Materials, 1986 : Proceedings of a Symposium, NIST (formerly NBS) Boulder, Colorado, November 3-5, 1986 p707

    [74]

    Niklasson G A, Li S Y, Granqvist C G 2014 Parallel Session of the 18th International School on Condensed Matter Physics Varna, Bulgaria, September 4-6, 2014 p012001

    [75]

    Lu S, Hou L, Gan F 1993 J. Mater. Sci. 28 2169

    [76]

    Soh J H, Wu M, Gu G, Chen L, Hong M 2016 Appl. Opt. 55 3751

    [77]

    Hao X, Liu X, Kuang C, Li Y 2013 Appl. Phys. Lett. 102 013104

    [78]

    Ben-Aryeh Y 2006 Appl. Phys. B 84 121

    [79]

    Wang S Y, Zhang H J, Zhang D X 2013 Acta Phys. Sin. 62 034207 (in Chinese) [王淑莹, 章海军, 张冬仙 2013 物理学报 62 034207]

    [80]

    Yang H, Trouillon R, Huszka G, Gijs M A 2016 Nano Lett. 16 4862

    [81]

    Pereira A, Grojo D, Chaker M, Delaporte P, Guay D, Sentis M 2008 Small 4 572

    [82]

    Mcleod E, Arnold C B 2008 Nature Nanotech. 3 413

    [83]

    Mcleod E, Arnold C B 2009 Opt. Express 17 3640

    [84]

    Li P Y, Tsao Y, Liu Y J, Lou Z X, Lee W L, Chu S W, Chang C W 2016 Opt. Express 24 16479

    [85]

    Darafsheh A, Guardiola C, Palovcak A, Finlay J C, Cárabe A 2015 Opt. Lett. 40 5

    [86]

    Liu C, Jin L D, Ye A P 2016 Acta Phys. Sin. 53 19 (in Chinese) [刘畅, 金璐頔, 叶安培 2016 激光与光电子学进展 53 19]

    [87]

    Wang Z 2015 Nanoscience 3 193

  • [1]

    Abbe E 1873 Acchiv. Mikroskop. Anat. 9 413

    [2]

    von Helmholtz H 1874 Ann. Phys. Chem. 557

    [3]

    Stephenson J W 1877 Monthly. Microsc. J. 17 82

    [4]

    Francia G T D 1952 Suppl. Nuovo. Cim. 9 426

    [5]

    Hao X, Kuang C, Gu Z, Wang Y, Li S, Ku Y, Ge J, Liu X 2013 Light: Sci. Appl. 2 e108

    [6]

    Courjon D, Bainier C 1994 Rep. Prog. Phys. 57 989

    [7]

    Greffet J J, Carminati R 1997 Pro. Surf. Sci. 56 133

    [8]

    Nassenstein H 1970 Opt. Commun. 2 231

    [9]

    Ash E A, Nicholls G 1972 Nature 237 510

    [10]

    Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E 1986 Biophys. J. 49 269

    [11]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [12]

    Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2005 Opt. Lett. 30 3356

    [13]

    Li X, Yang L, Hu C, Luo X, Hong M 2011 Opt. Express 19 5283

    [14]

    Aydin K, Bulu I, Ozbay E 2007 Appl. Phys. Lett. 90 77

    [15]

    Tyc T, Zhang X 2011 Nature 480 42

    [16]

    Shalaev V M 2007 Nat. Photon 1 41

    [17]

    Liu Z, Fang N, Yen T J, Xiang Z 2003 Appl. Phys. Lett. 83 5184

    [18]

    Zhang X, Liu Z 2008 Nature Mater. 7 435

    [19]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [20]

    Jacob Z, Alekseyev L, Narimanov E 2006 Opt. Express 14 8247

    [21]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [22]

    Upputuri P K, Wen Z B, Wu Z, Pramanik M 2014 J. Biomed. Opt. 19 116003

    [23]

    Hell S W 2007 Science 316 1153

    [24]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [25]

    Klar T A, Hell S W 1999 Opt. Lett. 24 954

    [26]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincottschwartz J, Hess H F 2006 Science 313 1642

    [27]

    Bastiaens P I H, Squire A 1999 Trends. Cell. Biol. 9 48

    [28]

    Kenworthy A K 2001 Methods 24 289

    [29]

    Hein B, Willig K I, Hell S W 2008 Proc. Nat. Acad. Sci. 105 14271

    [30]

    Min W, Lu S, Chong S, Roy R, Holtom G R, Xie X S 2009 Nature 461 1105

    [31]

    Wang Z, Guo W, Li L, Luk'Yanchuk B, Khan A, Liu Z, Chen Z, Hong M 2011 Nat. Commun. 2 218

    [32]

    Darafsheh A, Limberopoulos N I, Derov J S, Walker Jr D E, Astratov V N 2014 Appl. Phys. Lett. 104 061117

    [33]

    Krivitsky L A, Jia J W, Wang Z, Luk'Yanchuk B 2013 Sci. Rep. 3 3501

    [34]

    Li L, Guo W, Yan Y, Lee S, Wang T 2013 Light-Sci. Appl. 2 72

    [35]

    Yang H, Moullan N, Auwerx J, Gijs M A 2014 Small 10 1712

    [36]

    Guo H, Han Y, Weng X, Zhao Y, Sui G, Wang Y, Zhuang S 2013 Opt. Express 21 2434

    [37]

    Lee S, Li L, Wang Z 2014 J. Opt. 16 015704

    [38]

    Allen K W, Farahi N, Li Y, Limberopoulos N I, Walker D E, Urbas A M, Liberman V, Astratov V N 2015 Ann. Phys. 527 513

    [39]

    Wang Y, Guo S, Wang D, Lin Q, Rong L, Zhao J 2016 Opt. Commun. 366 81

    [40]

    Lin Q, Wang D, Wang Y, Rong L, Zhao J, Guo S, Wang M 2016 Opt. Quantum Electron. 48 557

    [41]

    Yan B, Yue L, Wang Z 2016 Opt. Commun. 370 140

    [42]

    Wang S, Zhang D, Zhang H, Han X, Xu R 2015 Microsc. Res. Tech. 78 1128

    [43]

    Wu L, Zhu H, Yan B, Wang Z, Zhou S 2015 J. Mater. Chem. C 3 10907

    [44]

    Hao X, Kuang C, Li Y, Liu X, Ku Y, Jiang Y 2012 Opt. Commun. 285 4130

    [45]

    Lai H S S, Wang F, Li Y, Jia B, Liu L, Li W J 2016 PLoS One. 11 e0165194

    [46]

    Guo M, Ye Y H, Hou J, Du B 2016 Appl. Phys. B 122 65

    [47]

    Guo M, Ye Y H, Hou J, Du B 2015 Photon. Res. 3 339

    [48]

    Darafsheh A, Walsh G F, Dal Negro L, Astratov V N 2012 Appl. Phys. Lett. 101 14128

    [49]

    Wang T, Kuang C, Hao X, Liu X 2011 J. Opt. 13 035702

    [50]

    Lee S, Li L, Wang Z, Guo W, Yan Y, Wang T 2013 Appl. Opt. 52 7265

    [51]

    Yang H, Gijs M A M 2015 Microelectron. Eng. 143 86

    [52]

    Yao L, Ye Y H, Feng Ma H, Cao L, Hou J 2015 Opt. Commun. 335 23

    [53]

    Hao X, Kuang C, Liu X, Zhang H, Li Y 2011 Appl. Phys. Lett. 99 203102

    [54]

    Lee S, Li L, Benaryeh Y, Wang Z, Guo W 2013 J. Opt. 15 125710

    [55]

    Lee S, Li L 2015 Opt. Commun. 334 253

    [56]

    Lu Y F, Zhang L, Song W D, Zheng Y W, Luk'Yanchuk B S 2000 JETP Lett. 72 457

    [57]

    Chen Z, Taflove A, Backman V 2004 Opt. Express 12 1214

    [58]

    Yang H, Cornaglia M, Gijs M A M 2015 Nano Lett. 15 46

    [59]

    Wu M H, Whitesides G M 2001 Appl. Phys. Lett. 78 2273

    [60]

    Li X, Chen Z, Taflove A, Backman V 2005 Opt. Express 13 526

    [61]

    Ferrand P, Wenger J, Devilez A, Pianta M, Stout B, Bonod N, Popov E, Rigneault H 2008 Opt. Express 16 6930

    [62]

    Zhang Z, Geng C, Hao Z, Wei T, Yan Q 2016 Adv. Colloid Interface Sci. 228 105

    [63]

    Yan Y, Li L, Feng C, Guo W, Lee S, Hong M 2014 ACS Nano 8 1809

    [64]

    Gu G, Zhou R, Chen Z, Xu H, Cai G, Cai Z, Hong M 2015 Opt. Lett. 40 625

    [65]

    Kong S C, Taflove A, Backman V 2010 Opt. Express 17 3722

    [66]

    Zhu H, Chen Z, Chong T C, Hong M 2015 Opt. Express 23 6626

    [67]

    Houston W V 1927 Phys. Rev. 29 478

    [68]

    Wu M, Huang B, Chen R, Yang Y, Wu J, Ji R, Chen X, Hong M 2015 Opt. Express 23 20096

    [69]

    Wu M, Chen R, Soh J, Shen Y, Jiao L, Wu J, Chen X, Ji R, Hong M 2016 Sci. Rep. 6 31637

    [70]

    Durnin J, Miceli Jr J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [71]

    McGloin D, Dholakia K 2005 Contem. Phys. 46 15

    [72]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [73]

    Bennett, Harold E 1988 Laser Induced Damage in Optical Materials, 1986 : Proceedings of a Symposium, NIST (formerly NBS) Boulder, Colorado, November 3-5, 1986 p707

    [74]

    Niklasson G A, Li S Y, Granqvist C G 2014 Parallel Session of the 18th International School on Condensed Matter Physics Varna, Bulgaria, September 4-6, 2014 p012001

    [75]

    Lu S, Hou L, Gan F 1993 J. Mater. Sci. 28 2169

    [76]

    Soh J H, Wu M, Gu G, Chen L, Hong M 2016 Appl. Opt. 55 3751

    [77]

    Hao X, Liu X, Kuang C, Li Y 2013 Appl. Phys. Lett. 102 013104

    [78]

    Ben-Aryeh Y 2006 Appl. Phys. B 84 121

    [79]

    Wang S Y, Zhang H J, Zhang D X 2013 Acta Phys. Sin. 62 034207 (in Chinese) [王淑莹, 章海军, 张冬仙 2013 物理学报 62 034207]

    [80]

    Yang H, Trouillon R, Huszka G, Gijs M A 2016 Nano Lett. 16 4862

    [81]

    Pereira A, Grojo D, Chaker M, Delaporte P, Guay D, Sentis M 2008 Small 4 572

    [82]

    Mcleod E, Arnold C B 2008 Nature Nanotech. 3 413

    [83]

    Mcleod E, Arnold C B 2009 Opt. Express 17 3640

    [84]

    Li P Y, Tsao Y, Liu Y J, Lou Z X, Lee W L, Chu S W, Chang C W 2016 Opt. Express 24 16479

    [85]

    Darafsheh A, Guardiola C, Palovcak A, Finlay J C, Cárabe A 2015 Opt. Lett. 40 5

    [86]

    Liu C, Jin L D, Ye A P 2016 Acta Phys. Sin. 53 19 (in Chinese) [刘畅, 金璐頔, 叶安培 2016 激光与光电子学进展 53 19]

    [87]

    Wang Z 2015 Nanoscience 3 193

  • [1] 王 笑, 刘 丹, 白永强, 张朝晖, 朱 星, 潘安练, 邹炳锁. 近场光学显微镜研究CdS0.65Se0.35纳米带空间分辨光致荧光谱. 物理学报, 2007, 56(11): 6352-6357. doi: 10.7498/aps.56.6352
    [2] 罗谷风, 徐惠芳, 陈峻, 胡梅生. 超晶格正长石的高分辨透射电子显微镜研究. 物理学报, 1989, 38(9): 1527-1529. doi: 10.7498/aps.38.1527
    [3] 阮美玲, 王震遐, 杨锦晴, 王玟珉, 俞国庆. 一些新颖碳纳米结构的高分辨率透射电子显微镜研究. 物理学报, 1999, 48(11): 2092-2097. doi: 10.7498/aps.48.2092
    [4] 张超, 方粮, 隋兵才, 徐强, 王慧. 基于微芯片的透射电子显微镜的低温纳米精度电子束刻蚀与原位电学输运性质测量. 物理学报, 2014, 63(24): 248105. doi: 10.7498/aps.63.248105
    [5] 王淑莹, 章海军, 张冬仙. 基于微球透镜的任选区高分辨光学显微成像新方法研究. 物理学报, 2013, 62(3): 034207. doi: 10.7498/aps.62.034207
    [6] 唐志列, 梁瑞生, 常鸿森. 双光子和多光子共焦显微镜的成像理论. 物理学报, 2000, 49(6): 1076-1080. doi: 10.7498/aps.49.1076
    [7] 李方华. 用高分辨电子显微镜测定晶体结构. 物理学报, 1977, 156(5): 193-198. doi: 10.7498/aps.26.193
    [8] 温树林, 冯景伟. 高分辨电子显微镜研究α-Si3N4晶格缺陷. 物理学报, 1985, 34(7): 951-955. doi: 10.7498/aps.34.951
    [9] 李方华. 用高分辨电子显微镜测定晶体结构. 物理学报, 1977, 1655(3): 193-198.
    [10] 阮美龄, 王震遐, 胡 均, 王玟珉, 俞国庆. 石墨薄片弯曲度的高分辨率电子显微镜研究. 物理学报, 1998, 47(11): 1853-1857. doi: 10.7498/aps.47.1853
    [11] 张岩, 刘宇, 李彦, 赵华波, 李震, 李睿, 张朝晖. 碳纳米管网络导电特征的导电型原子力显微镜研究. 物理学报, 2009, 58(12): 8473-8477. doi: 10.7498/aps.58.8473
    [12] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [13] 孙建平, 张兆祥, 侯士敏, 赵兴钰, 刘惟敏, 薛增泉, 施祖进, 顾镇南. 用场发射显微镜研究单壁碳纳米管场发射. 物理学报, 2001, 50(9): 1805-1809. doi: 10.7498/aps.50.1805
    [14] 张修睦, 杨奇斌, 常昕, 郭可信. 重叠微孪晶界面条纹象的电子显微镜观察与强度计算. 物理学报, 1983, 32(12): 1479-1488. doi: 10.7498/aps.32.1479
    [15] 杨权, 马立, 杨斌, 丁汇洋, 陈涛, 杨湛, 孙立宁, 福田敏男. 基于扫描电子显微镜的碳纳米管拾取操作方法研究. 物理学报, 2018, 67(13): 136801. doi: 10.7498/aps.67.20180347
    [16] 张兆祥, 张耿民, 侯士敏, 张 浩, 刘惟敏, 赵兴钰, 薛增泉, 顾镇南. 利用场发射显微镜研究O2对单壁碳纳米管场发射的影响. 物理学报, 2003, 52(5): 1282-1286. doi: 10.7498/aps.52.1282
    [17] 邓长发, 燕少安, 王冬, 彭金峰, 郑学军. 基于导电原子力显微镜的单根GaN纳米带光调控力电耦合性能. 物理学报, 2019, 68(23): 237304. doi: 10.7498/aps.68.20191097
    [18] 沈晓庆. 用Linfoot象质评价理论研究高分辨电子显微镜依赖失焦的象质. 物理学报, 1989, 38(3): 516-522. doi: 10.7498/aps.38.516
    [19] 胡睿璇, 潘冰洋, 杨玉龙, 张伟华. 基于线性成像系统的光学超分辨显微术回顾. 物理学报, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [20] 李文宇, 霍格, 黄岩, 董丽娟, 卢学刚. 空心Fe3O4纳米微球的制备及超顺磁性. 物理学报, 2018, 67(17): 177501. doi: 10.7498/aps.67.20180579
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1249
  • PDF下载量:  801
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-29
  • 修回日期:  2017-05-16
  • 刊出日期:  2017-07-20

基于近场光学的微球超分辨显微效应

    基金项目: 

    国家重点基础研究发展计划(批准号:2013CBA01703)、国家自然科学基金(批准号:61605162)、福建省自然科学基金(批准号:2017J05106)、中国科学院光电技术研究所微细加工光学技术国家重点实验室开放课题(KFS4)和福建省高端装备制造协同创新中心资助的课题.

摘要: 在光学成像领域,由于受到衍射极限的限制,常规成像分辨率在200 nm左右.科学的不断进步对更高分辨率有着迫切需求,如何突破这个极限来获得更高质量的高分辨率图像是热门研究领域.2011年提出了微球超显微技术:在原有的光学系统中,将直径几微米至几十微米的透明微球直接置于样品表面,就能够成倍提高传统光学显微镜的成像能力.微球超显微技术以其简单直接的特点,受到广泛关注.本文介绍了光学显微镜的研究背景以及国内外团队在微球超分辨显微技术方面的研究进展,包括通过在微球表面进行环刻同心环、中心遮挡和表面涂覆的方法来调节微球所产生的光子纳米喷射方面所开展的一系列研究,并进行了理论模拟和实验验证,进一步提升了微球的超分辨显微效应.最后,展望了今后微球超分辨显微技术的应用与发展方向.

English Abstract

参考文献 (87)

目录

    /

    返回文章
    返回